• Home
  • Over ons
  • Uw publicatie
  • Catalogus
  • Recensies
  • Help
  • Account
  • Contact / Impressum
Dissertatie - Publicatiereeks - Congresbundel - Vakboek - Collegedictaat/Studieboek - CD-Rom/DVD - Online Publicatie
Winkelmandje
Catalogus : Details

Anzhi Wang

On Non-destructive Material Parameter Identification using Full-field Measurement

An Anisotropic and Local Strain Reconstruction Method and a General Inhomogeneous Virtual Fields Method

voorkantachterkant
 
ISBN:978-3-8440-9342-1
Reeks:Schriftenreihe des Instituts für Stahlbau
Uitgever: Univ.-Prof. Dr. sc. techn. Klaus Thiele
Braunschweig
Volume:10
Trefwoorden:full-field measurement denoising; strain reconstruction; crack detection; inhomogeneous parameter identificaiton; virtual fields method
Soort publicatie:Dissertatie
Taal:Engels
Pagina's:238 pagina's
Gewicht:440 g
Formaat:25 x 17,6 cm
Bindung:Softcover
Prijs:59,80 € / 74,80 SFr
Verschijningsdatum:Januari 2024
Kopen:
  » plus verzendkosten
DOI:10.2370/9783844093421 (Online-Publicatie-Document)
Download:

Beschikbare online documenten voor deze titel:

U heeft Adobe Reader, nodig, om deze bestanden te kunnen bekijken. Hier vindt u ondersteuning en informatie, bij het downloaden van PDF-bestanden.

Let u er a.u.b. op dat de online-bestanden niet drukbaar zijn.

 
 DocumentSamenvatting 
 Soort bestandPDF 
 Kostengratis 
 ActiesHet bestand tonen - 93 kB (94825 Byte) 
 Actiesdownloaden van het bestand - 93 kB (94825 Byte) 
     
 
 DocumentDocument 
 Soort bestandPDF 
 Kosten44,85 EUR 
 ActiesTonen en kopen van het bestand - 24,3 MB (25510036 Byte) 
 ActiesKopen en downloaden van het bestand - 24,3 MB (25510036 Byte) 
     
 
 DocumentInhoudsopgave 
 Soort bestandPDF 
 Kostengratis 
 ActiesHet bestand tonen - 196 kB (200755 Byte) 
 Actiesdownloaden van het bestand - 196 kB (200755 Byte) 
     

Gebruikersinstellingen voor geregistreerde online-bezoekers

Hier kunt u uw adresgegevens aanpassen en uw documenten inzien.

Gebruiker:  niet aangemeld
Acties:  aanmelden/registreren
 Paswoord vergeten?
Aanbevelen:Wilt u dit boek aanbevelen?
Recensie-exemplaarBestelling van een recensie-exemplaar.
VerlinkingWilt u een link hebben van uw publicatie met onze online catalogus? Klik hier.
SamenvattingOver time, existing bridges in Germany and around the world are subject to material ageing and fatigue. Their safety needs to be assessed. Non-destructive material parameter identification using full-field measurement is helpful for the assessment. The identification requires the strain reconstruction from the displacement measurement and the expression of the material parameters, where cracks and damage should be considered in the context of ageing and fatigue. In this thesis, two approaches are developed addressing these requirements. They are the Anisotropic and Local Method (ALM) for full-field measurement reconstruction and the general Inhomogeneous Virtual Fields Method (IVFM) for parameter identification. A combined use of both methods is expected to provide a more accurate assessment.

The ALM reconstructs a local function from noisy and discrete measurement within an adaptively evolved anisotropic window for each data point. To determine the anisotropic window, an algorithm is developed to guide the evolution of the window from a single point to an appropriate shape and size for sufficient regularisation. The algorithm is given to both 1D and 2D. A fast computation scheme that replaces pointwise estimates with windowed estimates in variance-based fusion is also proposed. In addition, a physically meaningful indicator of discontinuities according to the reconstruction property is introduced. The validation of the ALM is demonstrated by its application to synthetic data in both 1D and 2D, as well as to displacement measurement from cyclic loading tests. A comparative study of different methods on synthetic data shows the higher accuracy of the ALM and the applicability of the fast scheme. Its application to experimental data successfully identifies the cracks and the reconstructed result shows satisfactory agreement with expectations in terms of fracture mechanics.

The IVFM is a general form of variance minimisation-based VFM for both homogeneous and inhomogeneous identification. Its generality is reflected in two ways. First, each material parameter is described spatially with individual distribution functions. Second, the distribution functions are unified into discrete matrix forms regardless of their type. In particular, a direct construction of a Finite Element (FE) based distribution matrix is given. A performance study of the IVFM, in terms of both computational efficiency and identification accuracy, is carried out based on 270 synthetic cases. The studied variables are the stiffness distribution, the loading condition, the measurement resolution, the distribution function type and the number of coefficients in it. The study shows that independently of the stiffness distribution and the load condition, an overall stiffness estimate can be plausibly given by a homogenous identification. However, an inhomogeneous identification depends on the load condition that affects the domain activation. It is also seen in most of the studied cases, the IVFM with an FE-based distribution has a more satisfactory performance than those with either regular or Chebyshev polynomials.