• Home
  • Over ons
  • Uw publicatie
  • Catalogus
  • Recensies
  • Help
  • Account
  • Contact / Impressum
Dissertatie - Publicatiereeks - Congresbundel - Vakboek - Collegedictaat/Studieboek - CD-Rom/DVD - Online Publicatie
Winkelmandje
Catalogus : Details

Philippe Jardin

Personalisierte Klassifizierung des Fahrstils durch maschinelles Lernen

voorkantachterkant
 
ISBN:978-3-8440-9016-1
Reeks:Forschungsberichte Mechatronische Systeme im Maschinenbau
Uitgever: Prof. Dr.-Ing. Stephan Rinderknecht
Darmstadt
Trefwoorden:Fahrstil; Personalisierung; Maschinelles Lernen; Neuronale Netze; Transfer Learning; Klassifizierung
Soort publicatie:Dissertatie
Taal:Duits
Pagina's:166 pagina's
Gewicht:225 g
Formaat:21 x 14,8 cm
Bindung:Softcover
Prijs:48,80 € / 61,10 SFr
Verschijningsdatum:Maart 2023
Kopen:
  » plus verzendkosten
Aanbevelen:Wilt u dit boek aanbevelen?
Recensie-exemplaarBestelling van een recensie-exemplaar.
VerlinkingWilt u een link hebben van uw publicatie met onze online catalogus? Klik hier.
SamenvattingEine Möglichkeit, um die Sicherheit von Fahrzeugen zu steigern, ist der Einsatz von Fahrerassistenzsystemen. Diese unterliegen heute jedoch häufig einer geringen Nutzerakzeptanz, da die individuell verschiedenen Bedürfnisse von FahrerInnen unterschätzt werden. Um den Nutzungsgrad dieser Systeme zu erhöhen und somit deren Potenziale voll auszuschöpfen, wird in dieser Dissertation eine personalisierte Fahrstilklassifizierung dargestellt. Als Initialisierung für die Personalisierung erfolgt zunächst die Umsetzung eines regelbasierten Klassifizierungsalgorithmus. So wird der Fahrstil anhand von fahrdynamischen Größen in drei Klassen klassifiziert. Der gewählte Ansatz liefert eine robuste Klassifizierung auf Basis einer geringen Menge einzustellender Parameter, sodass eine hohe praktische Nutzbarkeit gegeben ist. Für die Umsetzung der Personalisierung werden in dieser Arbeit Methoden aus dem Bereich des maschinellen Lernens angewandt. So kommt ein neuronales Netz zum Einsatz, das zunächst auf Grundlage der regelbasierten Klassifizierung initialisiert wird. Die Personalisierung basiert auf individuellen Fahrer-Fahrzeug-Interaktionen, welche in einem inkrementellen Transfer Learning herangezogen werden. Die Potenziale der dargestellten Methodik werden in einer ProbandInnenenstudie im realen Feld aufgezeigt. Die Auswertung ergibt eine individuelle Verbesserung der Klassifizierung für die ProbandInnen von im Mittel +32 %.