• Home
  • Over ons
  • Uw publicatie
  • Catalogus
  • Recensies
  • Help
  • Account
  • Contact / Impressum
Dissertatie - Publicatiereeks - Congresbundel - Vakboek - Collegedictaat/Studieboek - CD-Rom/DVD - Online Publicatie
Winkelmandje
Catalogus : Details

Kevin Tolle

Efficient Interpolation Methods for Nonlinear Finite Element Problems

voorkantachterkant
 
ISBN:978-3-8440-8776-5
Reeks:Mathematik
Trefwoorden:Mathematik; Finite Elemente; Modellreduktion; Aggressive Space-Mapping
Soort publicatie:Dissertatie
Taal:Engels
Pagina's:156 pagina's
Gewicht:230 g
Formaat:21 x 14,8 cm
Bindung:Softcover
Prijs:48,80 € / 61,10 SFr
Verschijningsdatum:Oktober 2022
Kopen:
  » plus verzendkosten
Aanbevelen:Wilt u dit boek aanbevelen?
Recensie-exemplaarBestelling van een recensie-exemplaar.
VerlinkingWilt u een link hebben van uw publicatie met onze online catalogus? Klik hier.
SamenvattingThis thesis investigates various types of interpolation strategies to simplify nonlinear finite element problems. Two major hindrances that often plague such problems are the number of variables and the computational costs associated with the assembly of the nonlinear operators. Therefore, we define an efficient interpolation framework based on the group finite element method and model order reduction techniques to handle these difficulties.

First, we develop the extended group finite element method, which interpolates nonlinear terms onto general finite element spaces. With the help of a tensor formulation, we are able to drastically simplify the assembly process. Following this, we introduce proper orthogonal decomposition and the discrete empirical interpolation method to our extended group finite element method to further reduce the problem size. Along the way, a broad selection of benchmark problems demonstrate the advantages of our proposed interpolation framework. Finally, we consider a practical medical application with the goal of identifying patient-specific parameters in real-time. Faced with additional difficulties, we apply the space-mapping method to our interpolation framework in order to derive an efficient optimization approach that warrants future research.