• Home
  • Over ons
  • Uw publicatie
  • Catalogus
  • Recensies
  • Help
  • Account
  • Contact / Impressum
Dissertatie - Publicatiereeks - Congresbundel - Vakboek - Collegedictaat/Studieboek - CD-Rom/DVD - Online Publicatie
Winkelmandje
Catalogus : Details

Daniel Wagner

Beiträge zur KI-basierten Erkennung menschlicher Aktivitäten und zum Einsatz generativer Modelle (GANs)

Bewegungsklassifikation und Erlernen interpretierbarer Repräsentationen

voorkantachterkant
 
ISBN:978-3-8440-7748-3
Reeks:Informationstechnik
Trefwoorden:Künstliche Intelligenz; Deep Learning; Maschinelles Lernen; Signalverarbeitung; Überwachtes und unüberwachtes Lernen; Lernen von interpretierbaren Darstellungen; Generative Adversarial Networks
Soort publicatie:Dissertatie
Taal:Duits
Pagina's:210 pagina's
Gewicht:312 g
Formaat:21 x 14,8 cm
Bindung:Softcover
Prijs:49,80 € / 62,30 SFr
Verschijningsdatum:December 2020
Kopen:
  » plus verzendkosten
Download:

Beschikbare online documenten voor deze titel:

U heeft Adobe Reader, nodig, om deze bestanden te kunnen bekijken. Hier vindt u ondersteuning en informatie, bij het downloaden van PDF-bestanden.

Let u er a.u.b. op dat de online-bestanden niet drukbaar zijn.

 
 DocumentDocument 
 Soort bestandPDF 
 Kosten37,35 EUR 
 ActiesTonen en kopen van het bestand - 24,2 MB (25342713 Byte) 
 ActiesKopen en downloaden van het bestand - 24,2 MB (25342713 Byte) 
     
 
 DocumentInhoudsopgave 
 Soort bestandPDF 
 Kostengratis 
 ActiesHet bestand tonen - 2,1 MB (2197960 Byte) 
 Actiesdownloaden van het bestand - 2,1 MB (2197960 Byte) 
     

Gebruikersinstellingen voor geregistreerde online-bezoekers

Hier kunt u uw adresgegevens aanpassen en uw documenten inzien.

Gebruiker:  niet aangemeld
Acties:  aanmelden/registreren
 Paswoord vergeten?
Aanbevelen:Wilt u dit boek aanbevelen?
Recensie-exemplaarBestelling van een recensie-exemplaar.
VerlinkingWilt u een link hebben van uw publicatie met onze online catalogus? Klik hier.
SamenvattingIn den letzten Jahren sorgte das Gebiet der Künstlichen Intelligenz (KI), insbesondere durch das Forschungsfeld Maschinelles Lernen (ML), für viel Aufmerksamkeit. Bis zum heutigen Zeitpunkt entwickelte sich ML zu einer Schlüsseltechnologie für moderne KI-Anwendungen weiter, wobei die momentan erfolgreichste und damit auch die populärste Methode das tiefe Lernen (engl. Deep Learning) ist. Hierbei steht der Aufbau der neuronalen Netze im Fokus, sodass mittlerweile eine Vielzahl von Architekturen und Typen für die verschiedensten Probleme existieren.

Statt dem Trend des Aufsuchens von immer besseren Architekturen zu folgen, wird in dieser Arbeit ein anderer Ansatz vorgestellt, der sich auf die Vorverarbeitung von Eingangsdaten, d.h. dem Einspeisen von nicht Rohdaten, fokussiert. Es wird aufgezeigt, dass diese neue Methode die Möglichkeit eröffnet, Deep Learning-Modelle zu verwenden, die einen geringeren Rechenaufwand bei gleichzeitiger Steigerung der Klassifikationsgenauigkeit aufweisen.

Der zweite Teil der Arbeit beschäftigt sich mit dem unüberwachten Erlernen von interpretierbaren Darstellungen. Interpretierbare Darstellungen sind komprimierte Datenrepräsentationen, die Variablen enthalten, wobei jede Variable einem markanten oder aussagekräftigen Datenattribut entspricht. Somit lassen sich unter anderem mit generativen Modellen Daten erzeugen, die einer bestimmten Klasse zugehörig sind. Hierfür wird ein Kernel-basiertes Lernverfahren eingeführt, das der derzeitigen Methode gegenübergestellt wird. Anschließend wird das Lernverfahren auf eine praxisnahe Applikation adaptiert, um aufzuzeigen, dass das entwickelte Verfahren auch in der Praxis einsetzbar ist. Hierfür wird eine neue Modellarchitektur vorgestellt, die bisherige Resultate deutlich übertrifft.