• Home
  • Over ons
  • Uw publicatie
  • Catalogus
  • Recensies
  • Help
  • Account
  • Contact / Impressum
Dissertatie - Publicatiereeks - Congresbundel - Vakboek - Collegedictaat/Studieboek - CD-Rom/DVD - Online Publicatie
Winkelmandje
Catalogus : Details

Bertram Stier

Experimental and Numerical Multi Scale Analysis of Fiber Reinforced Composites

voorkantachterkant
 
ISBN:978-3-8440-5488-0
Reeks:Applied Mechanics – RWTH Aachen University
Uitgever: Prof. Dr.-Ing. Stefanie Reese
Aachen
Volume:5
Trefwoorden:Multi Scale Analysis; Composites; Damage Interaction
Soort publicatie:Dissertatie
Taal:Engels
Pagina's:254 pagina's
Gewicht:378 g
Formaat:21 x 14,8 cm
Bindung:Softcover
Prijs:49,80 € / 62,30 SFr
Verschijningsdatum:Oktober 2017
Kopen:
  » plus verzendkosten
Download:

Beschikbare online documenten voor deze titel:

U heeft Adobe Reader, nodig, om deze bestanden te kunnen bekijken. Hier vindt u ondersteuning en informatie, bij het downloaden van PDF-bestanden.

Let u er a.u.b. op dat de online-bestanden niet drukbaar zijn.

 
 DocumentDocument 
 Soort bestandPDF 
 Kosten37,35 EUR 
 ActiesTonen en kopen van het bestand - 12,3 MB (12930496 Byte) 
 ActiesKopen en downloaden van het bestand - 12,3 MB (12930496 Byte) 
     
 
 DocumentInhoudsopgave 
 Soort bestandPDF 
 Kostengratis 
 ActiesHet bestand tonen - 87 kB (88616 Byte) 
 Actiesdownloaden van het bestand - 87 kB (88616 Byte) 
     

Gebruikersinstellingen voor geregistreerde online-bezoekers

Hier kunt u uw adresgegevens aanpassen en uw documenten inzien.

Gebruiker:  niet aangemeld
Acties:  aanmelden/registreren
 Paswoord vergeten?
Aanbevelen:Wilt u dit boek aanbevelen?
Recensie-exemplaarBestelling van een recensie-exemplaar.
VerlinkingWilt u een link hebben van uw publicatie met onze online catalogus? Klik hier.
SamenvattingIncreasing energy costs necessitate efficient lightweight constructions particularly in the fields of mobility and transport. For these applications, tailorable materials like fiber reinforced plastics (FRP) are gaining more and more importance. However, the characterization and experimental validation of advanced numerical composites analysis techniques is challenging.

A significant outstanding quandary is in regards to the proper, or most beneficial, scale on which the constitutive damage model defining the mechanical response of the material should function. The prediction of the global FRP weave response, particularly when exceeding the linear elastic regime, is only possible if the internal structure is taken into account. Thus, different scales need to be considered.

Treating the composites as fully homogenized via the macro scale approach is computationally efficient, but, since the physics induced by the intrinsic structure are lost, it is extremely challenging to devise a predictive model on this scale. In contrast, the meso scale approach, wherein the composite tows are treated as effective anisotropic materials, will always be more computationally expensive. It further requires a complex damage model to handle the extreme anisotropy of the tow material, with its directionally dependent multiple damage mechanisms. Advantageous is the better physical representation of the internal structure. The material model suitable for the tows needs to be fully characterized which can be done by verified micro scale analysis techniques. The micro scale approach, involving modeling the composite to the scale of the constituents (i.e. fiber and matrix materials) enables use of simpler models and avoids ad-hoc coupling rules for the various damage components. However, this approach can be very computationally demanding, and often, the constituent scale data best suited for characterizing the damage model are unavailable.

In this work, the hierarchical multi scale method is applied to predict the mechanical response of a carbon fiber reinforced plastics plain weave composite. The validity of the method is shown by comparison of the numerically obtained material response with experimental data at all scales. The advantages and limitations of this technique are discussed. An anisotropic damage material model which is required for this approach, is presented. It is shown that it is suitable to describe the material behavior of the constituents of the micro scale as well as unidirectional composites.