• Home
  • Over ons
  • Uw publicatie
  • Catalogus
  • Recensies
  • Help
  • Account
  • Contact / Impressum
Dissertatie - Publicatiereeks - Congresbundel - Vakboek - Collegedictaat/Studieboek - CD-Rom/DVD - Online Publicatie
Winkelmandje
Catalogus : Details

Hermann Rodenhausen

Knowledge Description and Galois Correspondence

Practical Impact of a Structural Idea

ISBN:978-3-8440-0066-5
Reeks:Mathematik
Trefwoorden:quasi-orders; Galois connections; closure conditions; knowledge spaces; model theory
Soort publicatie:Vakboek
Taal:Engels
Pagina's:78 pagina's
Gewicht:114 g
Formaat:21 x 14,8 cm
Bindung:Softcover
Prijs:24,80 € / 49,60 SFr
Verschijningsdatum:Mei 2011
Kopen:
  » plus verzendkosten
Download:

Beschikbare online documenten voor deze titel:

U heeft Adobe Reader, nodig, om deze bestanden te kunnen bekijken. Hier vindt u ondersteuning en informatie, bij het downloaden van PDF-bestanden.

Let u er a.u.b. op dat de online-bestanden niet drukbaar zijn.

 
 DocumentSamenvatting 
 Soort bestandPDF 
 Kostengratis 
 ActiesHet bestand tonen - 21 kB (20992 Byte) 
 Actiesdownloaden van het bestand - 21 kB (20992 Byte) 
     
 
 DocumentDocument 
 Soort bestandPDF 
 Kosten18,60 EUR 
 ActiesTonen en kopen van het bestand - 423 kB (432731 Byte) 
 ActiesKopen en downloaden van het bestand - 423 kB (432731 Byte) 
     
 
 DocumentInhoudsopgave 
 Soort bestandPDF 
 Kostengratis 
 ActiesHet bestand tonen - 40 kB (40465 Byte) 
 Actiesdownloaden van het bestand - 40 kB (40465 Byte) 
     

Gebruikersinstellingen voor geregistreerde online-bezoekers

Hier kunt u uw adresgegevens aanpassen en uw documenten inzien.

Gebruiker:  niet aangemeld
Acties:  aanmelden/registreren
 Paswoord vergeten?
Aanbevelen:Wilt u dit boek aanbevelen?
Recensie-exemplaarBestelling van een recensie-exemplaar.
VerlinkingWilt u een link hebben van uw publicatie met onze online catalogus? Klik hier.
Recensies:Hier vindt u boekrecensies
SamenvattingThe concept of a Galois connection has shown to be an important tool in the analysis of relations between various kinds of order structures. Implicitly, it was used by Galois in his theory of algebraic equations: given fields K and F, F extending K, the relation between the subgroups of the Galois group G(F, K) and the fields intermediate between K and F can be adequately described by a Galois connection. Another example of a Galois connection arises in logic by relating structures and sentences via the validity relation. Within computer science and formal linguistics, a well-known example of a Galois connection is given by the notion of a "context" in formal concept analysis. This model results in the general construction of Galois connections out of binary relations - interpreted as "incidence" between objects and attributes. The paradigmatical character and generality of this model give rise to the question how much the concept of a Galois connection actually differs from the underlying concept of a binary relation; in this book, this question is addressed by proving a representation theorem being more general than some of the representation results known from the literature.
Any Galois connection comprises natural closure operators on its components; in many classical examples, these closure operators have appealing algebraic descriptions. In this book the principles determining the outcome of the closure are analyzed by using methods of logic; in this way, a relation between structural operations (closure concepts) from different algebraic categories can be established. Actually, it is shown that there is an intrinsic relation between forms of algebraic closure and the concept of logical entailment known from propositional logic.
Further results concern the concept of a "basis" in the context of partial orders combining both, aspects of generative power and minimality. It is shown that bases generally exist and are uniquely determined. Moreover, structural aspects characterizing them can in convenient ways be described by a Galois connection.
It is well-known that Galois connections are strongly related to the psychological theory of "knowledge spaces", a conceptual framework that has recently been applied to the development of intelligent tutorial systems. We extend the focus of application by showing that knowledge space theory and tools used for its mathematical description can particularly be adapted to the study of mathematical misconceptions. We show that - in the domain considered - forms of conceptual failure display a high measure of regularity - a fact that parallels observations known from elementary algebra.
The research presented here shows that analyzing empirical data and solving conceptual problems associated to the type of application may relate in significant ways to mathematical questions of non-trivial character.