
Nah-Infrarot Kamera auf Basis von Germanium Photodetektoren in CMOS-Technologie

Ann-Christin Köllner

Nah-Infrarot Kamera auf Basis von Germanium Photodetektoren in CMOS-Technologie

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der Universität Stuttgart zur Erlangung der Würde einer Doktor-Ingenieurin (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von

Ann-Christin Köllner

aus Nürtingen

Hauptberichter: Prof. Dr.-Ing. Joachim N. Burghartz

Mitberichter: Prof. Dr.-Ing. habil. Jörg Schulze

Tag der mündlichen Prüfung: 19.06.2023

Institut für Nano- und Mikroelektronische Systeme der Universität Stuttgart 2023

Berichte aus der Halbleitertechnik

Ann-Christin Köllner

Nah-Infrarot Kamera auf Basis von Germanium Photodetektoren in CMOS-Technologie

Shaker Verlag Düren 2023

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Stuttgart, Univ., Diss., 2023

D 93 (Diss. Universität Stuttgart)

Copyright Shaker Verlag 2023 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-9273-8 ISSN 0945-0785

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421 / 99 0 11 - 0 • Telefax: 02421 / 99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Inhaltsverzeichnis

1.	Einl	leitung	5
	1.1.	Motivation	7
	1.2.	Zielsetzung	8
	1.3.	Beitrag der Arbeit	8
	1.4.	Gliederung der Arbeit	10
2.	Gru	ndlagen	11
	2.1.	Grundlagen einer Kamera	11
		2.1.1. Bestandteile einer Digitalkamera	12
		2.1.2. Funktionsprinzip einer Digitalkamera	12
	2.2.	Grundlagen eines Bildsensors	13
		2.2.1. Elektrische Eigenschaften	15
		2.2.2. Optische Eigenschaften	18
	2.3.	Grundschaltungen einer Ausleseschaltung	23
		2.3.1. Schalter	23
		2.3.2. Stromspiegel	24
		2.3.3. Differenzverstärker	26
	2.4.	Zusammenfassung	29
3.	Eigi	nung von Germanium für NIR Kameras	31
	3.1.	NIR Detektormaterialien	31
	3.2.	Materialanalyse	33
	3.3.	Zusammenfassung	37
4.	Eva	luierung von Germanium pin Bildsensoren	39
	4.1.	Stand der Technik	39
	4.2.	Aufbau und Schichtfolge der Germanium pin Photodioden	41
	4.3.		43
		4.3.1. Dunkelstromverhalten	44
		4.3.2. Kleinsignalcharakteristiken	49
		4.3.3. Photostrom und Signalbereich	52
		4.3.4. Spektrale Empfindlichkeit	57
		4.3.5. Detektivität	58
		4.3.6. Temperatureinfluss	59
	4.4.	Anforderungen an das Auslesekonzent	62

	4.5. 4.6.	Diskussion	63 66
5.	Ana	alyse verschiedener Auslesekonzepte	67
•		Stand der Technik	67
	5.2.		69
	J	5.2.1. Kapazitiver Transimpedanzwandler (CTIA)	70
		5.2.2. Gepufferte Gate Modulation (BGM)	72
		5.2.3. Stromspiegel (CM)	72
	5.3.	Experimentelle Ergebnisse gemeinsamer Schaltungsblöcke	73
	0.0.	5.3.1. Schalter	74
		5.3.2. Operationsverstärker	76
	5.4.	Experimentelle Ergebnisse der Auslesekonzepte	79
		5.4.1. Kapazitiver Transimpedanzwandler	80
		5.4.2. Gepufferte Gate Modulation	85
		5.4.3. Stromspiegel	90
	5.5.	Diskussion	95
	5.6.	Zusammenfassung	98
_	ъ		00
о.		lisierung prototypischer Nah-Infrarot Kameras	99
	6.1.	0 0	99
		6.1.1. Digitalisierung	100 104
		6.1.2. Schieberegister und Digitalteil im ASIC	$104 \\ 105$
	c o		$105 \\ 106$
	6.2. 6.3.	Stand der Technik	100
	0.3.	Implementierung einer 2 x 2 Kamera	109
		6.3.1. Systembeschreibung	113
	6.4.	Implementierung einer 6x2 Kamera	116
	0.4.	6.4.1. Systembeschreibung	117
		6.4.2. Experimentelle Ergebnisse	117
	6.5.	Diskussion	121
	6.6.	Zusammenfassung	126
7.	Zus	ammenfassung	127
			101
Α.	Anh		131
		Kalibrierung der optischen Leistung	
		Layout entstandener ASICs	
		Zusatzinformation - ADC	
	A.4.	Design entwickelter Platinen	133