Technische Universität Hamburg, Bauingenieurwesen

Schriftenreihe des Instituts für Massivbau

Mathias Thon

GlasFaserGlas GFG

experimentelle und theoretische Untersuchungen zur Entwicklung eines neuartigen Verbundwerkstoffs

Herausgeber:

Prof. Dr. sc. techn. Viktor Sigrist, Prof. Dr.-Ing. Günter Rombach

GlasFaserGlas GFG experimentelle und theoretische Untersuchungen zur Entwicklung eines neuartigen Verbundwerkstoffs

Dem Promotionsausschuss der Technischen Universität Hamburg zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt Dissertation

von Mathias Thon

aus Wiesbaden

2020

1. Gutachter: Prof. Dr. sc. techn. Viktor Sigrist

2. Gutachter: Prof. Dr.-Ing. Fiedler

Tag der mündlichen Prüfung: 26.02.2021

Schriftenreihe des Instituts für Massivbau der TUHH

Heft 20

Mathias Thon

GlasFaserGlas GFG

experimentelle und theoretische Untersuchungen zur Entwicklung eines neuartigen Verbundwerkstoffs

Shaker Verlag Düren 2021

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Hamburg, Techn. Univ., Diss., 2021

Copyright Shaker Verlag 2021

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-8313-2 ISSN 1865-8407

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99 0 11 - 0 • Telefax: 02421/99 0 11 - 9

Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Glas wird im Bauwesen nicht mehr nur für transparente Raumtrennungen, sondern immer häufiger auch für lasttragende Konstruktionen eingesetzt. Gläser zeichnen sich durch hohe Festigkeiten und hervorragende Dauerhaftigkeitseigenschaften aus, ihr sprödes Bruchverhalten ist allerdings ein Nachteil, den es durch technologische Massnahmen auszugleichen gilt. Im Tragwerksbau bzw. im konstruktiven Glasbau wird heute mehrheitlich Verbundsicherheitsglas (VSG) verwendet. Verbundsicherheitsgläser werden aus Floatgläsern oder teilvorgespannten Gläsern aufgebaut und bestehen aus mindestens zwei Glasscheiben, die mit Giessharzen oder Polyvinyl-Butyral-Folien miteinander verklebt sind. Wichtig für die Tragwerkssicherheit ist die nach dem Bruch einer der äusseren Glasscheiben erreichbare Resttragfähigkeit. Diese ist abhängig von den mechanischen und thermischen Eigenschaften der Klebeschicht. Sie ist in der Regel deutlich geringer als die Festigkeit des unbeschädigten Verbundsystems.

Herr Thon macht eine Alternative zum herkömmlichen Verbundglas zum Gegenstand seiner Arbeit. Mit einem neuartigen Glasverbund, bei dem auf einer Glasscheibe eine Glasfaser-Kunststoff-Verstärkung aufgebracht wird, soll die Tragfähigkeit erhöht und ein günstiges Nachbruchverhalten erzielt werden. Referenz-System für diese Entwicklung ist die Stahlbetonbauweise, bei der Zugbeanspruchungen durch die in den Beton eingelegte und mit ihm in Verbund wirkende Stahlbewehrung aufgenommen werden. Das von Herrn Thon entwickelte und im Rahmen seiner Promotionsarbeit untersuchte GlasFaserGlas besteht aus herkömmlichem Floatglas (Fensterglas) sowie aus Glasfasern, Epoxidharz und einem Haftvermittler; im Rahmen der Untersuchungen wurden diese Komponenten sowie die Vorbehandlung des Glases und die Art der Aufbringung der Verstärkungsschicht variiert.

Die Arbeit von Herrn Thon gliedert sich in drei Teile: Den Auftakt machen die Einleitung sowie eine Übersicht über den Werkstoff Glas und dessen mechanische Eigenschaften. Im nachfolgenden Mittelteil (Kapitel 3 und Anhang) werden die durchgeführten experimentellen Untersuchungen und die Versuchsauswertung beschrieben sowie die daraus abgeleiteten Erkenntnisse dargelegt. Im Theorieteil (Kapitel 4) wird schließlich auf verschiedene Berechnungsansätze und -modelle eingegangen, und zur Ermittlung des Bauteilversagens wird ein eigenes Berechnungsverfahren vorgestellt.

Insgesamt erzielt Herr Thon Ergebnisse von hohem Wert für Wissenschaft und Ingenieurpraxis. Diese stellen eine wichtige und hilfreiche Grundlage für weiterführende Arbeiten dar.

Luzern (Schweiz), 2021

Prof. Dr. Viktor Sigrist

Kurzfassung

Im Rahmen dieser Dissertation wurde ein neuartiges Verbundglas, das GlasFaserGlas, entwickelt. Die Besonderheit dieses Verbundglases ist, dass die Verbundschicht aus einem Glasfaser-Kunststoff-Verbund besteht und insgesamt eine erhebliche Verbesserung der mechanischen Eigenschaften sowie des Bruch- einschließlich des Nachbruchverhaltens erreicht wird. In Versuchen wurde gezeigt, dass es möglich ist, Glasscheiben dauerhaft und kraftschlüssig mit einem Glasfaser-Kunststoff-Verbund zu verstärken. Dafür wurden unterschiedliche Harzsysteme, Haftvermittler und Herstellungsverfahren eingesetzt und hinsichtlich ihrer Anwendbarkeit geprüft. Im Wesentlichen gibt es vier Punkte, die die Anwendbarkeit von GlasfaserGels im Glasbau beeinflussen:

- Herstellungsverfahren
- Chemische und mechanische Beständigkeit
- Transparenz oder Transluzenz
- Mechanische Eigenschaften

Die sehr gute Transparenz, die chemische und mechanische Beständigkeit ist der Grund für den Vormarsch von Glas in immer neue Anwendungsfelder. Einzig das spröde Bruchverhalten mit einer komplexen Abhängigkeit der Bruchwahrscheinlichkeit von zahlreichen Einflüssen erschwert die Anwendung von Glas. Besonders in der Anwendung als tragendes Bauteil ist eine gewisse Duktilität wünschenswert. Somit ist eine Verbesserung der mechanischen Eigenschaften bei gleichzeitiger Beibehaltung der sehr guten Transparenz und chemischen sowie mechanischen Beständigkeit erforderlich.

An drei und vier Punkt Biegeversuche konnte die Leistungsfähigkeit des GlasfaserGlases beeindruckend gezeigt werden.

Die Vorteile von "GlasFaserGlas" lassen sich wie folgt zusammenfassen:

- Deutliche Erhöhung des Tragwiderstands bis zum 5-fachen Wert der Einzelscheibe
- Ausgeprägtes pseudoduktiles Bruchverhalten
- Geringer Einfluss der schwer vorherzusagenden und stark streuenden Glasfestigkeit auf den Tragwiderstand
- Minimales Kriechen der Verstärkung aufgrund der Duromer-Matrix und der Fasern
- Kaum Veränderungen des Tragwiderstandes bei Temperaturen bis 70°C
- Erhöhung der Tragfähigkeit nach Glasbruch
- Möglichkeit der gezielten Auslegung des GlasFaserGlases auf die Einwirkung.

GlasFaserGlas ist bisher die einzige Möglichkeit, Glasscheiben als hoch belastbares und duktiles Verbundglas zu realisieren. Die Anwendung des Glasfaser-Kunststoffes ermöglicht die gezielte Anpassung der mechanischen Eigenschaften auf die zu erwartenden Beanspruchungen. Dadurch wird eine deutliche Steigerung der Leistungsfähigkeit von Ganzglas-Konstruktionen erreicht.

Inhaltsverzeichnis

1	Einl	leitung	12
	1.1	Zielsetzung	17
	1.2	GlasFaserGlas: Konzept eines neuartigen Verbundwerkstoffes	19
2	Der	Werkstoff Glas	23
	2.1	Festigkeit von Glasscheiben	24
	2.2	Biegefestigkeit im konstruktiven Glasbau	28
	2.3	Festigkeit von Fasern	30
	2.4	Bruchmechanik	31
	2.5	Konstruktiver Glasbau	32
3	Ver	suche	36
	3.1	Probenherstellung	36
	3.1.	1 Verwendete Glasscheibe	36
	3.1.	2 Verwendete Haftvermittler	36
	3.1.	3 Verwendete Kunststoff-Matrix	37
	3.1.	4 Verwendete Faserverstärkung	38
	3.1.	5 Aufbau der Probekörper	39
	3.1.	6 Herstellung der Probekörper	39
	3	3.1.6.1 Handlamination (HL)	40
	3	3.1.6.2 Vakuum unterstützte Harzinjektion (VARTM)	41
	3	3.1.6.3 Vakuuminjektionsverfahren (VI)	42
	3.1.	7 Zerspanende Glasbearbeitung	43
	3.1.	8 Fertigungsbedingte Abweichungen	47
	3.2	Versuchsprogramm	49
	3.2.	1 Biegeversuche	50
	3.2.	2 Schubversuche	52
	3.2.	3 Bewetterung	54
	3.2.	4 Transparenz	55
	3.3	Auswertung und Diskussion der Versuchsergebnisse	56
	3.3.	1 Faservolumengehalt	56
	3.3.	2 Biegeversuche	58

	3.3.2.1	Bestimmung des Elastizitätsmoduls von Glas	64
	3.3.2.2	Glasbruch	65
	3.3.2.2	2.1 Einfluss der Kantenbearbeitung	67
	3.3.2.2	2.2 Einfluss der Haftvermittler	68
	3.3.2.2	2.3 Einfluss der gleichmäßig beanspruchten Prüffläche	69
	3.3.2.3	Bauteilversagen	71
	3.3.2.3	3.1 Einfluss der Kantenbearbeitung	71
	3.3.2.	3.2 Einfluss der gleichmäßig beanspruchten Prüffläche	72
	3.3.2.3	3.3 Einfluss der Haftvermittler	73
	3.3.2.3	3.4 Interaktion der Momenten- und Querkraftbeanspruchung	74
	3.3.2.4	Diskussion der Ergebnisse	76
	3.3.3 Sch	ubfestigkeitsversuche zwischen Glas und der GFK-Verstärkung	78
	3.3.4 Ern	nüdung und Langzeitbeanspruchung	79
	3.3.5 Dat	nerhaftigkeit	84
	3.3.6 Tra	nsparenz	86
4	Bemessung	von Bauteilen aus GlasFaserGlas	92
	4.1 Adapti	erte Berechnungsmodelle	92
	4.1.1 Lin	ear elastische Verklebung	92
	4.1.2 Nu	merische Berechnung des verschieblichen Verbundes nach Alvarez	94
	4.1.3 Ela	stisch gebetteter Biegebalken	96
	4.2 Rissve	rklebung	99
	4.3 Verbur	ndversagen	108
	4.3.1 Sch	ubfestigkeit	108
	4.3.1.1	Ermittlung der Schubfestigkeit	109
	4.3.1.2	Dicke der Klebefuge	110
	4.3.1.3	Berechnung der Schubfestigkeit der Verbundfuge	116
	4.3.2 Sch	älwiderstand	119
	4.3.2.1	Bilineares Materialverhalten der Klebefuge	119
	4.3.2.2	"Nichtlinear negative Bettung"	120
	4.3.3 FEI	M-Simulationen der Verbundfestigkeit	125
	4.3.3.1	Modellbildung	126

	4	1.3.3.	2 Sensibilitätsstudie	128
	4.3.	4]	Diskussion der Berechnungsverfahren für das Verbundversagen	131
	4.3.	5 1	Diskussion der Nachrechnung der Schubversuche	133
4	.4	Bau	teilversagen	135
	4.4.	1 2	Zustand I - Ungerissener Querschnitt	135
	4.4.	2 2	Zustand II - Gerissener Querschnitt	136
	4	1.4.2.	1 Dehnung der GFK-Schicht	141
	4	1.4.2.	2 Aufklaffen des Biegerisses aufgrund der Druckzonenbiegung	142
	4.4.	3 2	Zustand III - Abgerissene Druckzone nach Zahnversagen	143
	4	1.4.3.	1 Zustand III _a	143
	4	1.4.3.	2 Zustand III _b	147
	4.4.	4 (Glasfestigkeit	149
	4.4.	5 1	Epoxidharz-Klebeverbindung: Ablösen der Glasfaser-Kunststoffverstärkung	149
	4.4.	6 2	Zugfestigkeit der GFK-Verstärkung	150
	4.4.	7]	Darstellung der Bruchzustände an den Bauteilversuchen	150
	4.4.	8	Validierung des Berechnungsverfahrens anhand der Versuche	152
4	.5	FEN	A-Simulation der Biegeprobe mit Elementausfall	165
	4.5.	1 4	Aufbau des numerischen Modells:	165
	4	1.5.1.	1 Klebeschicht – Epoxidharz	166
	4	1.5.1.	2 Einfluss der Elementgröße	167
	4.5.	2 '	Vergleich der Simulationen mit den Biegeversuchen	169
5	Zus	amm	enfassung und Ausblick	175
5	5.1	Her	stellungsverfahren:	175
5	5.2	Che	mische und mechanische Beständigkeit	176
5	5.3	Tra	nsparenz:	176
5	5.4	Fest	igkeit und Resttragfähigkeit	176
6	Anh	ang		180
Lite	Literaturverzeichnis21			219

Notation 9

Symbolverzeichnis

Lateinische Buchstaben

- A gleichmäßig beanspruchte Fläche / Fläche
- b Breite
- c Bettung / Federsteifigkeit
- d statische Höhe
- D Kraft in Druckzone / Druckkraft
- E Elastizitätsmodul
- F Kraft
- G Schubmodul
- h Höhe
- i freie Variable
- I Flächenträgheitsmoment
- K Spannungsintensitätsfaktoren
- 1 Länge
- m Masse
- M Moment
- min. minimal
- max. maximal
- n Verhältnis der Elastizitätsmoduli
- q Veränderliche Belastung
- R Widerstand
- S Schädigungsparameter
- s Abstance
- u Differenzverschiebung von Fügeteilen / Relativverschiebung
- U Umfang
- V Querkraft
- Vol Volumen
- vorh. vorhandener Wert
- w Verformung
- W Widerstandsmoment
- P Wahrscheinlichkeit / Wahrscheinlichkeitsverteilungsfunktion / Summenhäufigkeit
- x Koordinate / Variable
- y Koordinate / Funktionswert
- Y Geometriefaktor
- z Koordinate
- r Hebelarm
- Z Kraft in Zugzone / Zugkraft
- zul. zulässiger Wert

10 Notation

Griechische Buchstaben

- β Formparameter der Weibullverteilung
- γ Gleitwinkel
- Λ Differenz
- λ Abklingkoeffizient
- ε Dehnung
- Θ Skalenparameter / Charakteristischer Wert der Weibullverteilung
- ρ Bewehrungsgrad
- σ Spannung
- τ Schubspannung
- φ Faservolumenanteil
- ψ Drehwinkel
- ξ Verbundbeiwert

Indizes:

ag Anfangswert / Ausgangsgröße / Ausgangspunkt / Probengröße

Aag Ausgangsfläche / Prüffläche

Azg neue Fläche

b Verbund

B Biegung

C kritische Beanspruchung

c Bettung

cr Rissbeanspruchung

D Druckzone

Dü Dübelwirkung

eff effektiv, effektiver Wert

el elastisch

i freie Variable

if der inneren Kräfte

ING Ingenieurmodell

F Kraft, Belastung, Lasteinleitung

FEM Finite-Element Berechnung

f Faser

g Glas

ges. gesamt

G Schubmodul

GFG GlasFaserGlas

GFK Glasfaserkunststoff

GBV Glasbruchverbund

Notation 11

hag Ausgangshöhe

hzg neue Höhe

inf unten

m mittel

nir nicht infusionsfähige Rissspitze

nl nichtlinear

k angenommene Klebstoffschicht aus Epoxidharz

ko konstant

r Riss

rh Horizontalriss

rm mittlerer Rissabstand

s Schwerpunkt

st Stützweite

sw Schwinden

sup oben

SB Sekundärbruch

ug unterer Grenzwert

u Bruch

üb Übergang

Vag Ausgangsvolumen

Vzg neues Volumen

W Wahrscheinlichkeit

x Koordinate

y Koordinate

z Koordinate

Z Zahn

zg Zielwert / Zielgröße

I Rissbeanspruchungsarten Mode I

II Rissbeanspruchungsarten Mode II

III Rissbeanspruchungsarten Mode III