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Abstract

Background: Age estimation from medical images plays an important role in foren-
sic medicine to determine the chronological age of individuals lacking legal documen-
tation or to discriminate minors from adults. Current methods for imaging-based age
estimation are labour-intensive, subjective, and involve radiation exposure. Recent
studies indicate that magnetic resonance imaging (MRI) offers a viable alternative
to established methods. The goal of this work is to develop a fully automated,
computer-based, and non-invasive method to estimate the chronological age of male

adolescents and young adults based on knee MRIs.

Materials and Methods: A total of 489 three-dimensional knee MRIs were ac-
quired from 299 male Caucasian subjects aged 13 to 21 years. The dataset was
expanded with numeric data of the subjects (anthropometric measurements and
assessments of knee bone maturation). The proposed solution for automated age es-
timation is composed of three parts: (a) pre-processing to standardize the data, (b)
bone segmentation via convolutional neural networks (CNNs) to extract age-relevant
structures from the images, and (c) age estimation. Three different methods were
investigated in part (c). Method 1 (M1) is based on machine learning (ML) and uses
the numeric data to solve the task. Method 2 (M2) is composed of a CNN which
takes in knee MRIs and outputs age predictions per image slice. Subsequently, an
ML algorithm is trained on these predictions and on the numeric data to estimate
a single and final age per subject. Finally, Method 3 (M3) is a variant of M2 which
incorporates the numeric data into the CNN trained on knee MRIs. Similar to M2,
M3 predicts a final age per subject based on ML but using only the age predictions
of the CNN.

Results: The best performing method is M2 and achieves a mean absolute error
in age regression of 0.69 + 0.47 years and an accuracy in majority classification of
90.93% using the 18-year-threshold.

Conclusions: The results demonstrate the potential of this approach for age esti-
mation based on knee MRI and ML-techniques and is expected to improve further
with the incorporation of additional datasets.

Keywords: Automated age estimation - MRI - Knee - Machine learning - Convolu-

tional neural networks - Segmentation
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