IFA Forschungsberichte Fahrzeugakustik und Antriebstechnik

Ostfalia Hochschule Braunschweig/Wolfenbüttel Fakultät Fahrzeugtechnik

IFA Interessengemeinschaft Fahrzeugakustik und Antriebstechnik Prof. Dr.-Ing. U. Becker

IFA Research Reports Volume 2/2019

IFA Forschungsberichte Fahrzeugakustik und Antriebstechnik

Volume 2/2019

Udo Becker (Hrsg.)

IFA Research Reports

Shaker Verlag Düren 2019 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Copyright Shaker Verlag 2019
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-6993-8 ISSN 2570-1320

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9

Internet: www.shaker.de • e-mail: info@shaker.de

Carbon dioxide life cycle assessment of battery electric powertrains

Markus Eisenträger¹, Tim Stockinger², Udo Becker³, Klaus Rohde-Brandenburger⁴

Abstract

Considering the background of the omnipresent topic of climate change and the political ambition to lower greenhouse gas emissions, electro-mobility is seen as the saviour in the automotive industry and electric cars are hailed as zero-emission-vehicles. The emission advantages compared to vehicles powered by combustion technology are based on the established method of measuring emissions in proximity to vehicles. However, from a holistic point of view, operating conditions and framework conditions of the vehicles play a significant role which is rarely included in current discussions. With the societal and political background in mind, it makes sense to determine and evaluate the advantages and disadvantages of battery-electric-vehicles by means of a carbon dioxide life cycle assessment.

Keywords

Carbon dioxide life cycle assessment — Electromobility — Cradle-To-Grave

1...4 Ostfalia UAS, Faculty of Automovive Engineering, -IFA- Vehicle Acoustics and Powertrain, Wolfsburg, Germany

Contents

1	Introduction	3
2	Basic meteorological principles	3
2.1	Weather and climate	4
2.2	Greenhouse effect	4
2.3	Climate change	4
3	Political strategy and influence	Ę
3.1	International climate policies	5
3.2	National climate policies	6
3.3	Focus e-mobility in the traffic sector	7
4	Alternative powertrains	8
4.1	Basic composition of an electric powertrain	8
4.2	Advantages and disadvantages of the electric powertrain	15
5	Raw materials	17
5.1	Raw materials required for electric powertrain	17
5.2	Deposits and extraction	18
5.3	Recycling	20
5.4	Electric energy as fuel	22
5.5	Energy requirements in the production of electric powertrain	24
6	Definition life cycle assessment	26
6.1	Approaches for the compilation of an eco-balance	27
6.2	Definition of system limits for the compilation of an eco-balance	28
7	Compilation of the carbon dioxide life cycle assessment	28
7 1	Description of the computerised analysis tool	28

7.2	Results of the carbon dioxide life cycle assessment	30
8	Assessments and conclusions	45
	References	47