
Henry De-Graft Acquah

Introduction to Linear Programming for Economic Analysis

Х

Introduction to Linear Programming for Economic

Analysis

Henry De-Graft Acquah

Prof. Dr. Henry De-Graft Acquah

University of Cape Coast

Cape Coast, Ghana

dr.henrydegraft@gmail.com

Berichte aus der Mathematik

Henry De-Graft Acquah

Introduction to Linear Programming for Economic Analysis

Shaker Verlag Aachen 2018

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Copyright Shaker Verlag 2018

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-5967-0 ISSN 0945-0882

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de Dedication

To Nanny, Jeremy and Joyce

Preface

On assumption of duty at the University of Cape Coast in July 2008, I had the opportunity to teach Quantitative and Research methods. In the ensuing years, I also taught Computer applications in Agricultural Economics, Farm Management and Production Economics, and Applied Statistics and Econometrics. While teaching these quantitative courses to graduate students, the only thing I found lacking was an introductory textbook, one that provides students and professionals in the social sciences and related fields with a fundamental understanding of how to use linear programming techniques in empirical research. Thus, there is a need for a textbook, which will explain linear programming techniques and implement them with a free and readily available statistical software. This book fills this gap in the literature.

It presents a clear and concise introduction to linear programming methods and implements application examples of various techniques in economics using the R programming language. Fundamentally, each chapter presents theoretical concepts with application examples. One major problem of students is applying linear programming techniques to empirical data. The purpose of this book is to help overcome this problem by using the free and readily available R programming language to implement application examples for a wide range of linear programming techniques. The methodology of this book and much of its content has been tested in graduate quantitative courses in the University of Cape Coast. Students have found the approaches and the content of this book extremely useful and have made valuable suggestions for improvement.

Finally, I have inevitably accumulated debts of gratitude to colleagues, students, friends and acquaintances that I am happy to acknowledge. These include the contributions of the following persons who reviewed various draft chapters of the book.

Bernard Baah-Kumi	New Mexico State University
Owusu Kwabena Dankwa	New Mexico State University
Patrick Ofosuhene	Bowling Green State University
Abigail Lois Quansah	Ohio University
Kwabena Krah	University of Illinois, Urbana-Champaign
Francis Annan	University of Colombia in the City of New York
Thomas Torku	Middle Tennessee State University
Clement Kyei	University of Pretoria
Frederick Nyanzu	Mississippi State University

I am also grateful to 2015/2016 M. Phil Agricultural Economics graduate students at the University of Cape Coast for their helpful suggestions and comments about this material. In particular, I would like to thank Bernard Baah-Kumi, Owusu Kwabena Dankwa, Patrick Ofosuhene and Thomas Torku for their unflinching support throughout the preparation of this book. Special thanks go to the entire Acquah family for the encouragement and prayer support that has seen this book to a successful completion. I wish to thank my dear wife, Joyce, for her enormous support and understanding during the preparation of this book. I wish to thank the staff of Shaker Verlag for their cooperation, assistance and excellent production work.

Finally, to the Most High God, be all glory, for granting exceedingly and abundantly above what I thought or imagined.

March 2018

Prof. Dr. Henry de-Graft Acquah, Cape Coast

CONTENT

1	Linear Algebra Basics	1
	1.1 Introduction	1
	1.2 Vector	1
	1.3 Matrix	2
	1.4 Properties of Matrices	3
	1.5 The Determinant of a Matrix	5
	1.6 Transpose of a Matrix	7
	1.7 Minors and Cofactors	7
	1.8 The Inverse of a Matrix	10
	1.9 Linear Dependence and Rank of a Matrix	17
	1.10 System of Linear Equations	17
	1.10.1 The Augmented and Coefficient Matrices of a System	18
	1.10.2 Echelon Matrices	20
2	Formulation of Linear Programming Problems	25
2	2.1 Introduction	25
2	2.2 Brief History of Linear Programming	25
2	2.3 Mathematical Programming (Optimization)	26
	2.3.1 Optimization Problem	26
	2.3.2 Linear Programming (LP)	27
2	.4 Formulation of Linear Programming Problems	28
2	.5 Forms of Linear Programmes	31
	2.5.1 Canonical and Standard Forms	31
	2.5.2 The Matrix Form	33
2	.6 Advantages and Disadvantages of Linear Programming	34
3	Basic Concepts and Terminologies	37
	.1 Introduction	37
3	.2 The Linear Programming Problem	37
	.3 The Objective Function	42
	.4 The Decision Variables / Activities	42
3	.5 Constraints	42
3	.6 Sign Restrictions	43
	.7 Linear Function and Linear Inequality	44
	.8 Feasible Point and Feasible Region	44
	.9 Basic Solutions and Basic Feasible Solution	44
	.10 The Optimal Solution	45
	.11 The Convex Set and Extreme Points	45

4	The Structure of Linear Programming	46
	4.1 Introduction	46
	4.2 Assumptions of Linear Programming	46
	4.2.1 Linearity	46
	4.2.2 Proportionality	47
	4.2.3 Additivity	47
	4.2.4 Divisibility	48
	4.2.5 Certainty	48
	4.2.6 Homogeneity	48
	4.2.7 Fixedness	48
	4.2.8 Finiteness	49
	4.2.9 Optimization	49
	4.2.10 Objective Function Appropriateness	49
	4.2.11 Decision Variable Appropriateness	49
	4.2.12 Constraint Appropriateness	49
	4.2.13 Summary of Assumptions	50
	4.3 Converting Linear Programming Problem to Standard Form	50
	4.3.1 Converting an LP from Canonical form to Standard Form	50
	4.3.2 Manipulating a Linear Programming Problem	56
	4.4 The Stages in Linear Programming	57
	4.4.1 Defining the Problem	57
	4.4.2 Building a Matrix	57
	4.4.3 Solving the Problem	58
	4.4.4 Interpreting Output	58
	4.4.5 Validating / Verifying the Model	59
5	Methods for Solving Linear Programming Problem	60
J	5.1 Introduction	60
	5.2 The Graphical Method	60
	5.2.1 The Corner Point Method	61
	5.2.2 The Isoprofit and Isocost Method	79
	5.2.3 Special Cases using the Graphical Method	91
	5.2.4 Limitation of the Graphical Method	101
	5.3 The Simplex Method	101
	5.3.1 General Steps involved in using the Simplex Method	103
	5.3.2 Special cases of Linear Programming using Simplex Method	109
	5.4 The Big M Method	117
	5.5 The Two-Phase Simplex Method	124
	5.6 Interior Point Method	141
	5.6.1 Karmarkar's Algorithm (Interior Point Method)	142
	5.6.1.1 General Steps Involved in Using Karmarkar's Method	143
	5.6.1.2 Converting a Linear Programming Problem to Karmarkar's Form	144
	5.6.1.3 Solved Problems	146

6	Duality and Sensitivity Analysis	151
	6.1 Introduction	151
	6.2 The Concept of Duality	151
	6.3 Formulation of A Dual Problem	151
	6.4 The Duality Theory	154
	6.5 Sensitivity Analysis and Shadow Prices	157
	6.5.1 Importance of Sensitivity Analysis	157
	6.5.2 Graphical Introduction to Sensitivity Analysis	158
	6.5.3 Shadow Prices	163
	6.5.4 Economic Interpretation of the Shadow Price and Duality	167

7 R Applications to Linear Programming Problems	171
7.1 Introduction	171
7.2 Application of Linprog to Lp Solving	172
7.3 Application of LpSolve to Lp Solving	176
7.4 Application of IntPoint to Lp Solving	177
7.5 Solved Examples Using LpSolve and IntPoint	180
7.6 Practical Examples of Linear Programming Problems	192
7.7 R Codes for Solution to Examples Solved in the Book	221
Appendix A: Introduction to R	243
A.1 Introduction and Preliminaries	243
A.2 Creation and Manipulation of Objects	
A.2.1 Vectors and Sequences	246
A.2.2 Matrices	248
A.3 Loading Data into R	251
A.3.1 Loading an Excel file	251
A.3.2 Loading Data from Statistical Software Packages SPSS, Minitab,	
Stata, SAS and R Data	252
A.3.3 Loading a TXT File	252
A.4 R Graphics	253
References	257