Static and Dynamic Analysis of Functionally Graded Piezoelectric Material Beam

Vibhuti Bhushan Pandey Sandeep Kumar Parashar Berichte aus der Mechanik

Sandeep Kumar Parashar Vibhuti Bhushan Pandey

Static and Dynamic Analysis of Functionally Graded Piezoelectric Material Beam

Shaker Verlag Aachen 2015 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Copyright Shaker Verlag 2015
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8440-3905-4 ISSN 1616-0126

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9

Internet: www.shaker.de • e-mail: info@shaker.de

Preface

Functionally graded piezoelectric materials have received a lot of attention in recent days by their diversified and potential applications. In the present work the static bending and free vibration analysis of functionally graded piezoelectric material (FGPM) beam is investigated under electro-mechanical loading. The effective material properties are assumed to be graded according to sigmoid law through the thickness direction. Both two dimensional and three dimensional finite element analysis have been used. Here in solution for both multi-layered and monomorph models are presented and compared. COMSOL multiphysics (version 4.2) finite element software is used to obtain results. The accuracy of method is validated by comparing the results with previous studies. A convergence test is done with different mesh refinement. The effect of volume fraction index on tip deflection and fundamental frequencies is also evaluated. First three mode shapes are also presented for both two dimensional and three dimensional views.

Key words: Functionally graded piezoelectric beam, Sigmoid law, Finite element analysis.

Acknowledgment

We would like to express our thanks to all those who helped in preparation of this manuscript. We take immense pleasure in thanking all the faculty members, staff members and colleagues of Department of Mechanical Engineering, Rajasthan Technical University Kota. Our sincere thanks are due to **Prof S. K. Rathore, Mr. R. Rajora** and **Dr. P. K. Jamwal** for their keen interest and advice on various aspects of the subject.

The first author would like to express his special thanks to friends Pramod and Karmvir and would also like to express his heartfelt thanks to the beloved parents Mr. Arvind Kumar Pandey & Dr. Aparna Pandey, for their help & support in all the circumstances.

Vibhuti Bhushan Pandey

Sandeep Kumar Parashar

Contents

Preface	i
Acknowledgment	ii
Contents List of Figures	
1. Introduction	1
1.1 Motivation for the Present Work	2
1.2 Objectives	3
2. Literature Review	4
2.1 Beam	4
2.1.1 Approximate Solutions	4
2.1.2 Closed Form Solutions	6
2.2 Plate and Shell	8
2.2.1 Approximate Solutions	8
2.2.2 Closed Form Solutions	10
2.3 Cylinder and Sphere	11
3. Theory of Piezoceramics	12
3.1 Introduction to Piezoelectricity	12
3.2 Constitutive Equations	14
4. Theory of FGM and FGPM	16
4.1 Introduction to Functionally Graded Material (FGM)	16
4.1.1 FGM History	17
4.1.2 Effective Properties of FGM	17

	4.1.3 Applications of FGM	21
	4.2 Introduction to Functionally Graded Piezoelectric Material (FGPM)	21
	4.2.1 Need to Use FGPM	22
	4.2.2 Effective Properties of FGPM	22
	4.2.3 Gradient Description	22
	4.2.4 Applications of FGPM	23
5.	Static Analysis of FGPM Beam	24
	5.1 Convergence Study	24
	5.2 Validation	25
	5.3 Results and Discussions	27
6.	Dynamic Analysis of FGPM Beam	32
	6.1 Convergence Study	32
	6.2 Validation	33
	6.3 Results and Discussions	35
7.	Conclusion and Future Scope	44
Re	References	