A FEM simulation of transport and conversion processes in landfills using a multiphase model based on the theory of porous media

Bei der zuständigen Fakultät Ingenieurwissenschaften, Abteilung Bauwissenschaften der Universität Duisburg-Essen vorgelegte Dissertation zum Erwerb des Grades Doktor-Ingenieur (Dr.-Ing.)

von Dipl.-Ing. Markus Robeck geboren am 19.08.1975 in Essen-Werden

Die mündliche Prüfung wurde am 06. Juli 2012 mit den Gutachtern

Prof. Dr.-Ing. Renatus Widmann Prof. Dr.-Ing. Tim Ricken

abgehalten.

Forum Siedlungswasserwirtschaft und Abfallwirtschaft Universität Duisburg-Essen

Heft 39

Markus Robeck

A FEM simulation of transport and conversion processes in landfills using a multiphase model based on the theory of porous media

Shaker Verlag Aachen 2012

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Duisburg-Essen, Univ., Diss., 2012

Copyright Shaker Verlag 2012 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-1471-6 ISSN 1616-6035

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Dissertation wurde von mir in der Zeit zwischen 2007 bis 2012 verfasst. Ermöglicht wurde mir diese Arbeit im Rahmen einer Kooperation zwischen der Abfallentsorgungsgesellschaft Ruhrgebiet mbH (AGR Unternehmensgruppe) und der Universität Duisburg-Essen, an der ich zwischen 2007 und 2010 zuerst beim Fachgebiet Siedlungswasser- und Abfallwirtschaft und später beim Institut für Mechanik an meiner Promotion gearbeitet habe.

Mein besonderer Dank gilt daher meiner Vorgesetzten Frau Dr. Susanne Raedeker und meinen ehemaligen Kollegen von der AGR für die Unterstützung meiner Arbeit, insbesondere bei der Durchführung der Feldversuche sowie für die zur Verfügung gestellten Daten zur Validierung des entwickelten Deponiemodells. Ein großer Dank geht hier an meinen Kollegen Manuel Gruyters.

Besonders bedanken möchte ich mich auch bei meinen beiden Gutachtern Herrn Professor Renatus Widmann und Herrn Professor Tim Ricken für die richtigen Impulse zur rechten Zeit, die gelungene fachliche und menschliche Unterstützung, sowie für die Anfertigung der beiden Gutachten. Herrn Professor Jochen Bluhm danke ich für den Vorsitz der Prüfungskommission und Herrn Professor Jörg Schröder für die tolle Atmosphäre beim Institut für Mechanik.

Ebenfalls bedanken möchte ich mich bei meinen ehemaligen Kolleg(inn)en der Universität Duisburg-Essen für den fachlichen Austausch und den freundschaftlichen Umgang. Besonderer Dank gilt hier meinen ehemaligen Bürokolleg(inn)en Frau Dr. Ruth Brunstermann und Herrn Moritz Bloßfeld. Weiterer Dank gilt an dieser Stelle Herrn Dr. Christian Felske und Herrn Dr. Jochen Schubert für die Betreuung meiner vorausgehenden Tätigkeit als studentische Hilfskraft bzw. meiner Diplomarbeit, durch die es mir erst ermöglicht wurde, über das vorliegende Thema zu promovieren. In diesem Zusammenhang möchte ich mich auch bei den für mich tätigen studentischen und wissenschaftlichen Hilfskräften bedanken, insbesondere bei Jan Robert Belouschek, der mir viel Fleißarbeit bei der Vorbereitung der Simulationsrechnungen abgenommen hat.

Ein wesentlicher Dank gilt meiner Familie und meinen Freunden, die mich immer unterstützt und für den notwendigen mentalen und seelischen Ausgleich gesorgt haben. Ein besonderer Dank für ihre Liebe geht an meinen Vater, meine Mutter und meine Schwester, an Annabelle Lyhs und ihre Familie für 10 Jahre an meiner Seite, sowie an Katja Wiegemann und ihre Familie, die in den letzten eineinhalb Jahren immer für mich da waren. Für ihre besondere Freundschaft danke ich Jan Dreusicke, Andreas Bäre und Oliver Mayer.

Darüber hinaus möchte ich mich bei allen Personen bedanken, die zum Gelingen dieser Arbeit beigetragen haben. Ein besonderer Dank geht hier an meinen derzeitigen Arbeitgeber Herrn Dr. Hathumar Schmidt vom Ingenieurbüro für Bauwesen Schmidt GmbH, der mich bei der Fertigstellung meiner Dissertation großzügig unterstützt hat.

Zusammenfassung

Weltweit betrachtet ist die Deponierung von Abfällen die verbreiteteste Art, Abfälle zu entsorgen. Das damit verbundene Gefährdungspotenzial für die Umwelt bleibt auch nach der Ablagerungsphase bei einer zeitlich sukzessiv sinkenden Intensität der ablaufenden Deponieprozesse über Jahrzehnte erhalten. Insbesondere das durch Mikroorganismen aus den organischen Abfallanteilen gebildete Deponiegas mit seinen beiden Hauptbestandteilen Methan (CH_4) und Kohlendioxid (CO_2) führt bei unkontrollierten Emissionen neben einem explosiven Gefährdungspotenzial (CH₄) zu einer Beschleunigung des anthropogen bedingten Klimawandels. Darüber hinaus kann das bei der Deponierung entstehende Sickerwasser zur Kontamination des anstehenden Bodens und des Grundwassers führen. Eine Abschätzung des Langzeitverhaltens einer Deponie in Bezug auf die Sickerwassermengen, den Abbau der organischen Substanz, die daraus resultierende Gasproduktion und den damit verbundenen Setzungen ist für Planer, Deponiebetreiber und Abfallbehörden u.a. zur Dimensionierung und Genehmigung von Anlagenteilen, sowie zur Einschätzung der Dauer der Nachsorgephase und des Gefährdungspotenzials unerlässlich. Als Hilfsmittel werden dafür häufig Prognosemodelle verwendet. Viele der existierenden Modelle sind jedoch nicht in der Lage, die stark miteinander gekoppelten Prozesse innerhalb einer Deponie adäquat zu beschreiben, sowie zeitlich und räumlich abzubilden.

Aus dieser Motivation heraus wurde ein Deponiemodell basierend auf der Theorie poröser Medien für Mehrphasensysteme entwickelt. Dabei werden die gekoppelten Transport- und Umsetzungsprozesse innerhalb einer Deponie durch mathematisch gekoppelte Differentialgleichungen beschrieben, die mit Hilfe der Finiten Elemente Methode (FEM) numerisch gelöst werden. Das entwickelte Deponiemodell erlaubt damit eine zeitliche und räumliche (3-D) Darstellung der gekoppelten Deponieprozesse in Bezug auf die Entwicklung des vorhandenen Organikgehalts, der Abbaurate, der Temperatur, der Dichte des Abfallgemisches, der Setzungen und der Gasentwicklung. Hierbei werden die Einflüsse der Deponiegenese und -geometrie berücksichtigt. Die lokale Berechnung der Gasbildungsrate, des Gasdruckes und der daraus resultierenden Gasströmung zu jedem Zeitschritt ermöglicht eine Simulation der diffus über die Deponieoberfläche austretenden Gaserfassungssystems ist mit Hilfe des Simulationsmodells eine Optimierung des aktiven Gaserfassungssystems durch die Identifizierung von über- und untersaugten Deponiebereichen möglich.

Die vorliegende Arbeit zeigt den theoretischen Hintergrund des entwickelten Deponiemodells mit den aufgestellten Feldgleichungen (Konzept der Volumenanteile, Saturierungsbedingung, Massen-, Impuls-, Drall- und Energiebilanz), den zur Schließung des Gleichungssystems erforderlichen konstitutiven Materialgleichungen (einschließlich der Auswertung der Entropieungleichung für einen thermodynamisch konsistenten Modelansatz), sowie die numerische Aufbereitung der Gleichungen zur Implementierung in das 'Finite Element Analysis Program' FEAP. Durch die Identifizierung und Bestimmung der erforderlichen physikalischen und chemischen Materialparameter der einzelnen Konstituierenden kann ein realistisches Materialverhalten des Abfallgemisches unter Deponiebedingungen simuliert werden, wobei sich der Einfluss einzelner Materialparameter auf das Simulationsergebnis anhand der durchgeführten Sensitivitätsanalyse erkennen lässt. Die Validierung des Modells erfolgte u.a. durch die Simulation der Deponieprozesse einer in den 80er und 90er Jahren errichteten bzw. betriebenen Siedlungsabfalldeponie und dem anschließenden Vergleich der Simulationsergebnisse mit vorhandenen Messdaten.

Contents

1	Inti	Introduction		
2 Basics		3		
	2.1	Introd	luction to microbiology	3
		2.1.1	Metabolism and growth of microorganisms	5
	2.2	Thern	aodynamic description of the energy metabolism of microorganisms .	8
		2.2.1	Calculation of energy change during chemical reactions	11
		2.2.2	Thermodynamic description of mixtures	13
	2.3	Chem	ical kinetics	15
		2.3.1	Influence of the temperature on the reaction rate	18
	2.4	Enzyr	ne kinetics	18
		2.4.1	Enzyme kinetics with inhibition	20
	2.5	Subst	rate specific kinetics for microbial growth	21
		2.5.1	Substrate specific kinetics for microbial growth with substrate inhibition	25
		2.5.2	Substrate specific kinetics for microbial growth with the effect of population density	26
		2.5.3	Substrate specific kinetics for microbial growth with product inhibition	27
		2.5.4	Further influencing factors on microbial growth kinetics	29
3	Mu	nicipal	solid waste landfills	33
	3.1	Recen law in	t historical development of landfilling, landfill technology and landfill Germany	33
		311	Unregulated (wild) dumps	33
		312	Sanitary landfills	34
	32	Waste	characterization	41
	0.2	3.2.1	Average material composition of the different waste types listed in TA-SIEDLUNGSABFALL [3]	41
		3.2.2	Average composition of cellulose, hemicellulose and lignin within the individual waste fractions	44
		3.2.3	Physical properties of untreated municipal waste mixture	47
	3.3	Landf	ill behavior	48
		3.3.1	Landfill gas formation	49
		3.3.2	Leachate generation	50
		3.3.3	Settlements	51

	3.4	Landf	ill models	52
		3.4.1	GasSim2	54
		3.4.2	Moduelo	54
		3.4.3	HBM	55
		3.4.4	LDAT	55
		3.4.5	POSE	56
4	The	eory of	Porous Media (TPM)	57
	4.1	Applie	cation Areas of the TPM	60
		4.1.1	Application to landfill bodies	60
	4.2	Conce	pt of volume fraction	60
	4.3	Densit	y and mass	62
	4.4	Kinen	natics	63
		4.4.1	Motion functions	63
		4.4.2	Material time derivatives	65
		4.4.3	Deformations	65
		4.4.4	Transport theorems	67
		4.4.5	Strains	67
	4.5	Balan	ce equations	68
		4.5.1	Balance equation of mass	69
		4.5.2	Balance equation of momentum	70
		4.5.3	Balance equation of moment of momentum	72
		4.5.4	Balance equation of energy	74
		4.5.5	Entropy inequality	78
5	The	e simpl	ified constitutive 3-phase model	81
	5.1	Assun	nptions	81
		5.1.1	Assumption of an incompressible solid inorganic phase φ^S and an incompressible solid organic phase φ^O , both having the same motion	81
		5.1.2	Assumption of mass exchange processes occurring only between the organic phase φ^{O} and the gas phase φ^{G}	82
		5.1.3	Assumptions of small deformations without acceleration and a unique temperature of all phases occupying the same place \ldots .	82
	5.2	Field	equations	83
		5.2.1	Balance equation of mass	83
		5.2.2	Balance equation of momentum $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	83
		5.2.3	Balance equation of energy	84

		5.2.4	Volume Fraction Concept	. 84
		5.2.5	Constraints	. 84
	5.3	Consti	itutive theory	. 85
		5.3.1	Constitutive approach for the organic degradation rate $\hat{\rho}^{\rm G}$ $\ .$. 94
	5.4	Nume	rical treatment	. 97
	5.5	Weak	forms	. 98
6	Par	ameter	r identification	101
	6.1	Litera	ture review for determining the physical properties of the individual	
		constit	tuents φ^{α}	. 101
		6.1.1	Porosity	. 101
		6.1.2	Density	. 102
		6.1.3	Heat capacity and conductivity	. 103
		6.1.4	Gas permeability	. 104
	6.2	Under within	lying assumptions of the constitution of each individual phase φ^{α} the smeared 3-phase model	. 105
		6.2.1	Organic solid phase $\varphi^{\mathcal{O}}$. 105
		6.2.2	In organic solid phase $\varphi^{\rm S}$. 106
		6.2.3	Gas phase φ^{O}	. 106
		6.2.4	Simplified 3-phase model with homogenization scheme $\ . \ . \ .$.	. 107
	6.3	Deterr	nination of required material parameters	. 108
		6.3.1	Determination of the initial intrinsic permeability K_0	. 108
		6.3.2	Determination of the real densities $\rho^{\alpha R}$ and initial volume fractions $n_{0S}^{\alpha R}$. 109
		6.3.3	Determination of the real heat conductivity $\alpha_{\nabla\Theta}^{\alpha R}$ and the real specific heat capacity $c^{\alpha R}$. 113
		6.3.4	Determination of thermal expansion coefficient $\alpha^{\alpha R}$. 115
		6.3.5	Determination of energy exchange $\hat{\rho}_{energy}^{O}$. 115
		6.3.6	Determination of the maximum degradation rate $\hat{\rho}_{\max}^{O}$. 116
		6.3.7	Determination of the organic saturation constant K_{n^O} within the MONOD function $\hat{\rho}^O_{n^O}$ and of the fitting parameters β_i , κ_i and $\Theta_{opt,i}$ within the temperature function $\hat{\rho}^O_{\Theta}$. 116
7	Sen	sitivity	/ analysis	119
	7.1	Standa	ard setup	. 120
	7.2	Variat	ion of energy exchange	. 127
	7.3	Variat	ion of specific heat capacity	. 131

	7.4	Variat	ion of heat conductivity $\ldots \ldots \ldots$. 134
	7.5	Variat	ion of organic saturation constant	. 137
	7.6	Variat	ion of maximum degradation rate	. 140
	7.7	Comp	arison of variations carried out	. 143
8	3-D	simul	ation of conversion processes in a landfill in North Rhine	e-
	Wes	stphali	a	147
	8.1	In-situ	1 field tests	. 148
		8.1.1	Test field area for investigation of microbial methane oxidation	. 148
		8.1.2	Core drilling in 2 differing locations carried out in 2007	. 151
	8.2	Data	collection	. 155
	8.3	Landf	ill genesis	. 156
	8.4	Discre	tization and parameters	. 158
		8.4.1	Material parameters	. 159
		8.4.2	Initial conditions	. 159
		8.4.3	Boundary conditions	. 160
	8.5	Comp	utation results	. 161
		8.5.1	Gas emissions over landfill surface to air	. 162
		8.5.2	Total gas production rate and cumulated gas production $\ . \ . \ .$. 166
		8.5.3	Volume fraction of organic (partial density), temperature and or- ganic degradation rate	. 168
		8.5.4	Demonstration of an active gas extraction $\ldots \ldots \ldots \ldots$. 178
9	Con	clusio	n and remarks	181
Bi	bliog	graphy		185

List of Figures

Internal structure of microbial cells, see Madigan et al. $[100]$ \ldots	3
The phylogenetic three domains of life by comparative rRNA gene sequencing, see MADIGAN ET AL. [100]	5
Typical growth curve of a bacterial population, see Madigan et al. $\left[100\right]$	7
a) Reaction rates of zero, first and second order vs concentration (qualitative for k=0.5), b) corresponding decrease of concentration vs time	16
a) Enzyme saturation due to increasing substrate concentration (picture from WIKIPEDIA [159]), b) Reaction rate v_1, v_2 and v_3 vs substrate concentration for three enzymes with a different substrate affinity $(K_{M,1} < K_{M,2} < K_{M,3}$, $[S] >> K_M \rightarrow v_1 = v_2 = v_3 = v_{max}) \ldots \ldots$	20
Qualitative comparison of different rate equations $(\mu_{max} = 1, K_S = 0.05, n = 3)$	24
Qualitative comparison of different rate equations with substrate inhibition on the specific growth rate μ ($\mu_{max} = 1$, $K_S = 0.05$, $K_I = 2.0$ and $K = 20.0$)	26
Inhibition effect on specific growth rate μ due to increasing cell concentration C_X (qualitative for the parameter: $\mu_{max}=1,C_S=0.1,K_S=2.0)$	27
Inhibition effect on the specific growth rate ¹ μ due to increasing product concentration C _P (qualitative for the parameter: $\mu_{max} = 1$, K _{Pi} = 0.05, C _{Pm} = 0.5, k = 20.0, $\beta = 3.0$)	28
a) Qualitative plot of the square root of growth rate vs temperature (Eq. 2.46) for two different parameter sets r_1 (b = 1.0, c = 0.5, $T_{min} = 270 \text{ K}$, $T_{max} = 320 \text{ K}$) and r_2 (b = 2.0, c = 0.05, $T_{min} = 270 \text{ K}$, $T_{max} = 320 \text{ K}$), b) respective plot of the growth rate vs temperature	30
Relative growth rate of psychrophilic, mesophilic and thermophilic methanogens, see BATSTONE ET AL. [20]	31
a) Plot of relative growth rate vs temperature (Eq. 2.47) ₁ for two different parameter sets f_1 ($\beta_1 = 0.01$, $T_{opt,1} = 310$ K) and f_2 ($\beta_2 = 0.1$, $T_{opt,2} = 330$ K), b) plot of relative growth rate vs pH-value (Eq. 2.47 ₂ : $\beta = 0.5$, $pH_{opt} = 7$)	32
Development of bottom sealings in Northrhine-Westphalia (Germany), see KRÜMPELBECK [87]	36
Standard construction of the bottom and surface sealing system of the landfill class I (DK I) and II (DK II), by TA-SIEDLUNGSABFALL [3]	39
a) Average composition in % by weight of domestic waste in Germany in 1985 (BILITEWSKI ET AL. [23]), b) average composition in % by weight of household-like commercial waste (ref: Gewerbeabfallsichtungen IGW 1996-1998 in: LOLL [98])	42
	Internal structure of microbial cells, see MADIGAN ET AL. [100] The phylogenetic three domains of life by comparative rRNA gene sequencing, see MADIGAN ET AL. [100]

16	a) Average composition in mass-% of bulky waste (ref: Gewerbeabfallsich- tungen IGW 1996-1998, see LOLL [98]), b) average composition in mass- % of construction and demolition waste with and without minerals (ref: Gewerbeabfallsichtungen IGW 1996-1998, see LOLL [98])
17	Average composition of road waste in mass-% (ref: IGW 1996-1998; Verband kommunale Abfallwirtschaft und Stadtreinigung e. V. 1997, see LOLL [98]) 44
18	Time course of gas concentrations in landfill cells for the principal constituents of landfill gas, see VDI 3790 [5]
19	Motion function
20	Homogenization of the true structure and volume fraction concept $$ 61
21	Illustration of the different motions of a solid and a fluid particle within a porous body
22	Heat flux vector
23	Substrate dependent function $\hat{\rho}_{n^{O}}^{O}$, based on a modification of the TESSIER equation 2.33
24	Proposal for modeling the influence of a temporal declining water content due to the construction of a non-permeable surface sealing, expressed by the inhibition function $\hat{\rho}_{w}^{O}$ reducing the local degradation rate $\hat{\rho}^{O}$ (w ₁ = 1, w ₂ = 30, n = 30)
25	Schematic representation of the pore structure of waste, from HUDSON ET AL. [78]
26	Simplification of the true structure of a waste mixture to a simplified struc- ture composed of a solid phase (S), an anaerobic degradable organic phase (O) and a gas phase (G) and homogenization scheme of the simplified structure to a smeared 3-phase model composed of (S), (O) and (G) \ldots 107
27	a) plot of fitted MONOD function $\hat{\rho}_{n^{O}}^{O}$ from Eq. 5.64, b) plot of fitted temperature function $\hat{\rho}_{\Theta}^{O}$ from Eq. 5.66
28	Boundary conditions of a fictitious landfill cell with a simplified cube geometry of 25 m x 25 m x 25 m for carrying out sensitivity analysis and location of point 225, 465 and 705 within the cube \ldots \ldots \ldots 119
29	$\begin{array}{l} Computation \ results \ of \ the \ standard \ parameter \ setup \ (Tab. \ 15) \ concerning \ organic \ content \ after \ a) \ 10 \ years, \ b) \ 20 \ years, \ temperature \ after \ c) \ 10 \ years, \ d) \ 20 \ years \ and \ organic \ degradation \ rate \ after \ e) \ 10 \ years, \ f) \ 20 \ years \ . \ . \ 122 \ years \ . \ . \ . \ 122 \ years \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
30	$ \begin{array}{l} Computation \ results \ of \ the \ standard \ parameter \ setup \ (Tab. \ 15) \ concerning \\ the \ gas \ production \ rate \ Q_{LG} \ of \ the \ cube \ and \ the \ cumulated \ gas \ production \\ V_{LG} \ \ldots \ $
31	Computation results of the standard parameter setup (Tab. 15) at point 225 and point 465 concerning a) organic content, b) temperature, c) degrada- tion rate and applied d) MONOD function $\hat{\rho}_{n^{O}}^{O}$ and e) temperature function $\hat{\rho}_{\Theta}^{O}$

32	Illustration of the interactions between the local organic degradation rate $\hat{\rho}^{O}$, local temperature Θ and the applied temperature function $\hat{\rho}^{O}_{\Theta}$ based on the computation results of the standard setup concerning point 225 127
33	Effect on gas production rate due to variation of energy exchange (standard setup = 100%)
34	Effect on cumulated gas production due to variation of energy exchange (standard setup = 100%)
35	Effect on temperature due to variation of chemical potential: a) point 225, b) point 465 (standard setup = 100 %)
36	Effect on organic content due to variation of chemical potential: a) point 225, b) point 465 (standard setup = 100%)
37	Effect on degradation rate due to variation of chemical potential: a) point 225, b) point 465 (standard setup = 100%)
38	Effect on gas production rate due to variation of specific heat capacity (standard setup = 100%)
39	Effect on cumulated gas production due to variation of specific heat capacity (standard setup = 100%)
40	Effect on temperature due to variation of specific heat capacity: a) point 225, b) point 465 (standard setup = 100%)
41	Effect on organic content due to variation of specific heat capacity: a) point 225, b) point 465 (standard setup = 100%)
42	Effect on degradation rate due to variation of specific heat capacity: a) point 225, b) point 465 (standard setup = 100%)
43	Effect on gas production rate due to variation of heat conductivity (standard setup = 100%)
44	Effect on cumulated gas production due to variation of heat conductivity (standard setup = 100%)
45	Effect on temperature due to variation of heat conductivity: a) point 225, b) point 465 (standard setup = 100 %)
46	Effect on organic content due to variation of heat conductivity: a) point 225, b) point 465 (standard setup = 100%)
47	Effect on degradation rate due to variation of heat conductivity: a) point 225, b) point 465 (standard setup = 100%)
48	Effect of different applied values for $K_{n^{O}}$ on the applied MONOD function $\hat{\rho}_{n^{O}}^{O}$ (standard setup = 100 %)
49	Effect on gas production rate due to variation of organic saturation constant (standard setup = 100%)
50	Effect on cumulated gas production due to variation of organic saturation constant (standard setup = 100%)

51	Effect on temperature due to variation of organic saturation constant: a) point 225, b) point 465 (standard setup = 100%)
52	Effect on organic content due to variation of organic saturation constant: a) point 225, b) point 465 (standard setup = 100 %)
53	Effect on degradation rate due to variation of organic saturation constant: a) point 225, b) point 465 (standard setup = 100%)
54	Effect on gas production rate due to variation of maximum degradation rate (standard setup = 100%)
55	Effect on cumulated gas production due to variation of maximum degradation rate (standard setup = 100%)
56	Effect on temperature due to variation of maximum degradation rate: a) point 225, b) point 465 (standard setup = 100%)
57	Effect on organic content due to variation of maximum degradation rate: a) point 225, b) point 465 (standard setup = 100%)
58	Effect on degradation rate due to variation of maximum degradation rate: a) point 225, b) point 465 (standard setup = 100%)
59	Effect due to percentage variation of the respective material input param- eter on a) maximum obtained gas production rate, b) gas production after 20 years, c) and d) maximum obtained local temperature, e) and f) maxi- mum obtained local degradation rate (input parameters of standard setup = 100 %)
60	a) Landfill in North Rhine-Westphalia with a temporal cover layer b) Composition of the temporal cover layer
61	Overview of the considered landfill in North Rhine-Westphalia with a dumping area of 20 ha, a gas collection system and the areas of field tests . 148
62	a) test field area and measurement equipment, b) installed gas box, c) data logger, d) soil sample of temporal cover layer
63	Overview of test field with measurement equipment
64	a) preparation for core drilling, b) grab system for waste excavation, c) -h) different excavated waste fractions
65	a) - h) different excavated waste fractions
66	Results of laboratory tests of excavated waste concerning a) water content over depth at point 1, b) loss of ignition over depth at point 1, c) water content over depth at point 2 and d) loss of ignition over depth at point 2. 154
67	Investigation of temperature over depth at a) point 1 and b) point 2 155
68	CAD construction of a considered landfill in North Rhine-Westphalia - waste deposition phase from September 1983 to December 1996 157
69	Discretized landfill geometry using linear 4 nodes tetrahedral elements (41704 elements and 8212 nodes) and boundary conditions of the year 1991 (8 annual layers; ratio $x:y:z = 1:1:4$), compare with top view of 1991 in Fig. 68

70	Computation results of the spatial distribution of gas velocity in z direction at the end of 1992 (9 years after disposal start)	162
71	Computation results of the spatial distribution of gas velocity in z direction at the end of 1994 (11 years after disposal start)	163
72	Illustration of the spatial distribution of the respective gas velocity vectors \mathbf{w}_{GS} at the end of a) 1992 and b) 1994 (9 years and 11 years after disposal start)	163
73	Computation results of the spatial distribution of gas velocity in z direction at the end of 1998 (18 years after disposal start)	164
74	Computation results of the total gas production rate and of the cumulated gas production over 100 years in comparison with the collected gas rate .	166
75	Computation results of a) organic content, b) temperature, c) organic degradation rate at the end of 1986 and d) organic content, e) temperature, f) organic degradation rate at the end of 1989 (3 years and 6 years after disposal start)	169
76	Computation results of a) organic content, b) temperature, c) organic degradation rate at the end of 1992 and d) organic content, e) temperature, f) organic degradation rate at the end of 1995 (9 years and 12 years after disposal start)	170
77	Computation results of a) organic content, b) temperature, c) organic degradation rate at the end of 1998 and d) organic content, e) temperature, f) organic degradation rate at the end of 2001 (15 years and 18 years after disposal start)	171
78	Computation results of a) organic content, b) temperature, c) organic degradation rate at the end of 2004 and d) organic content, e) temperature, f) organic degradation rate at the end of 2007 (21 years and 24 years after disposal start)	172
79	Computation results of a) organic content, b) temperature, c) organic degradation rate at the end of 2010 and d) organic content, e) temperature, f) organic degradation rate at the end of 2013 (27 years and 30 years after disposal start)	173
80	Computation results of a) organic content, b) temperature, c) organic degradation rate at the end of 2023 and d) organic content, e) temperature, f) organic degradation rate at the end of 2033 (40 years and 50 years after disposal start)	174
81	Illustration of the computed organic content at core drilling 1 (x=420m, y=255m, z) and 2 (x=350m, y=140m, z) in August 2007 \ldots	175
82	Illustration of the computed a) temperature and b) organic degradation rate; each at core drilling 1 ($x=420m$, $y=255m$, z) and 2 ($x=350m$, $y=140m$, z) in August 2007	176
83	Plot of the temperature function $\hat{\rho}_{\Theta}^{O}$ from Eq. 5.66 using the new fitting parameters	177

84	Influence of an active gas extraction on the gas pressure distribution and
	on the resulting gas velocity vectors at two different points of time: a)
	biodegradation at its highest level, b) biodegradation at a lower level several
	years later

List of Tables

1	Thermodynamic data of some substances at 298 K, ATKINS & DE PAULA [16]
2	Zero-order, first-order and second-order reactions
3	An extract of allocation criteria from TASI [3]
4	An extract of allocation criteria for mechanically and biologically treated waste from ABFABLV [6] 40
5	Characterization of Municipal Solid Waste
6	Characterization of Paper an Paper Products
7	Characterization of Green Waste
8	Characterization of Food Waste
9	Characterization of Miscellaneous Waste 47
10	Typical characteristics of the material, gas and water balance of landfills deposited with untreated municipal waste, by DACH [40]
11	Typical range of some leachate parameters (investigated by Ehrig [61]) 51
12	Material density of non-porous waste fractions, by DACH [40] 102
13	Specific heat capacity and heat conductivity of non-porous solid materials (same assumptions as in Tab. 12), by DACH [40]
14	Thermal expansion coefficient α^{m} of a few materials at 20 °C
15	Standard setup of applied material input parameters, defined as $100~\%$ $$ 121
16	Waste amount and composition of a landfill in North Rhine-Westphalia 156
17	Gas rate and cumulated gas concerning discrete points of time 167

Abbreviations and symbols

Greek letters

α	Identifier of the 1,, κ individual constituents (phases) φ^{α}
α^{m}	Thermal expansion coefficient of the mixture or individual materials
$\alpha^{\alpha R}$	Real thermal expansion coefficient of the constituent φ^{α}
$\alpha_{\nabla\Theta}$	Heat conductivity of the mixture
$\alpha^{\alpha R}_{\nabla \Theta}$	Real heat conductivity of the constituent φ^{α}
$\beta, \beta_1, \beta_2, \beta_i$	Fitting parameters for temperature and pH-function
$\beta_{\rm p},\beta_{\rm m},\beta_{\rm t}$	Fitting parameters of applied temperature function (5.66) concerning psychrophilic, mesophilic and thermophilic micro-organisms
$\partial()$	Partial derivative concerning the quantity (\dots)
$\partial^2()$	2. partial derivative concerning the quantity (\dots)
$\Delta()$	Change in the quantity ()
ε^{α}	Specific internal energy of the constituent φ^{α}
η^{lpha}	Specific entropy of the constituent φ^{α}
$\eta_{\mathrm{CH}_4}, \eta_{\mathrm{CO}_2}, \eta_{\mathrm{LG}}$	Dynamic viscosity of methane, carbon dioxide and landfill gas
Θ	Temperature
Θ^{α}	Temperature of the constituent φ^{α}
Θ_{0S}	Temperature at reference configuration
$\Theta_{opt,p},\Theta_{opt,m},\Theta_{opt,t}$	Optimum temperature of metabolism activity concerning psy- chrophilic, mesophilic and thermophilic microorganisms
$\Theta_{225}, \Theta_{465}$	Local temperature at point 225 and point 465
κ	Number of individual constituents
$\kappa_{\rm p}, \kappa_{\rm m}, \kappa_{\rm t}$	Fitting parameters of applied temperature function (5.66) concerning psychrophilic, mesophilic and thermophilic microorganisms
$\lambda, \lambda^{\mathrm{OR}}, \lambda^{\mathrm{GR}}$	Lagrange multiplier
$\lambda, \lambda_{\rm LG}, \lambda_{\rm W}$	Heat conductivity of individual materials, landfill gas and water
μ	Specific growth rate of microorganism(s)
μ_{\max}	Maximum specific growth rate of $\operatorname{microorganism}(s)$
μ_1, μ_2, μ_J	Chemical potential concerning the substance 1, 2 and J

ν, ν_{J}	Stoichiometric coefficients, concerning the substance J
ρ	Total density of the mixture
ρ^{α}	Partial density of the constituent φ^{α}
$\rho^{\alpha R}$	Real density of the constituent φ^{α}
$\hat{ ho}^{lpha}$	Mass supply term of the constituent φ^{α}
$\hat{\rho}^{O}$	Organic degradation rate
$\hat{\rho}_{225}^{\rm O}, \hat{\rho}_{465}^{\rm O}$	Local organic degradation rate at point 225 and point 465
$\hat{\rho}_{\max}^{O}$	Maximum organic degradation rate
$\hat{\rho}_{\Theta}^{O}$	Dimensionsless function of temperature influencing $\hat{\rho}^{\rm O}$
$\hat{ ho}_{\mathrm{n}^{\mathrm{O}}}^{\mathrm{O}}$	Dimensionsless function of organic content influencing $\hat{\rho}^{\rm O}$
$\hat{\rho}_{\mathrm{pH}}^{\mathrm{O}}$	Dimensionsless function of pH-value influencing $\hat{\rho}^{\rm O}$
$\hat{ ho}_{ m w}^{ m O}$	Dimensionsless function of water content influencing $\hat{\rho}^{\rm O}$
$\hat{\rho}_{i}^{O}$	Dimensionsless function of further inhibitors influencing $\hat{\rho}^{\rm O}$
$\hat{\rho}_{\text{energy}}$	Amount of exchanged energy
\sum	Sigma sign (summation operator)
ψ^{α}	Helmholtz free energy of the constituent φ^{α}
Ψ^{α}	Chemical Potential of the constituent φ^{α}
$\Psi_{\rm tot}$	Total porosity
φ^{α}	Individual constituent α
x	Motion function
χ_{lpha}	Lagrange an motion function of the constituent φ^{α}
$\boldsymbol{\chi}_{lpha}^{-1}$	Eulerian Motion function of the constituent φ^{α}
∂B_S	Boundary area of the solid phase (material surface area)

Latin letters

$()^{-1}$	Inverse of the quantity ()
$()^{T}$	Transpose of the quantity $()$
$()^{lpha}_{0\mathrm{S}}$	The quantity () of the constituent φ^{α} in the reference configuration (initial condition)
$[]^{\mathrm{T}}$	Equilibrium concentration of the quantity []
[A], [B], [C], [D], [J]	Concentration of the chemical substance A, B, C, D and J
[E], [ES]	Concentration of enzymes and enzyme-substrate complex
[P], [S]	Concentration of product and substrate
a, b, c, d	Corresponding stoichiometric coefficients of substances A, B, C, D
А	Pre-exponential factor in ARRHENIUS equation
\mathbf{A}_{lpha}	Almansi strain tensor in the actual configuration
AbfAblV	Abfallablagerungsverordnung
ATP	Adenosine triphosphate
b	Regression coefficient in the RATKOWSKY equation
bj	Molality of the substance J in solution
b	Acceleration due to gravity
В	Control space of an investigated body
B_{0S}	Control space of an investigated porous solid body in the reference configuration $\left(t_0=0\right)$
B_S	Control space of an investigated porous solid body in the actual configuration $({\rm t}_1>{\rm t}_0)$
B_S^+	Control space of an investigated porous solid body in the actual configuration $({\rm t}_2>{\rm t}_1)$
\mathbf{B}_{lpha}	Left Cauchy Green deformation tensor
BMU	Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit
BOD_5	Sum parameter: biological oxygen demand after 5 days
$^{\circ}\mathrm{C}$	Degree of Celsius
С	Set of constitutive quantities
$c^{\alpha R}$	Real specific heat capacity of the constituent φ^{α}
cj	Molar concentration of the substance J in solution
C_{Inh}	Concentration of an inhibitor
C_{J}	Concentration of the substance J

C _{Oxy}	Concentration of oxygen
$C_{\rm P}, C_{\rm S}$	Product concentration and substrate concentration
C_{Pm}	Maximum product concentration where specific growth rate is zero
C_X	Concentration of microorganisms
\mathbf{C}_{lpha}	Right cauchy green deformation tensor
CAD	Computer-aided design
COD	Sum parameter: Chemical oxygen demand
\mathcal{D}	Set of the dissipative part
d()	Derivative of the quantity ()
da, d \mathbf{a}	Surface element in the actual configuration
$\mathrm{d}\mathbf{A}_{0lpha}$	Surface element in the reference configuration
\mathbf{D}_{lpha}	Symmetric part of the spatial velocity gradient \mathbf{L}_{α}
DepV, DepVerwV	Deponieverordnung, Deponieverwertungsverordnung
$\det(\dots)$	Determinant of the quantity ()
DFG	Deutsche Forschungsgesellschaft (German Research Foundation)
div()	Divergence of the quantity (\ldots) concerning actual configuration
DK I, DK II	Deponieklasse I (landfill class I), Deponieklasse II (landfill class II)
dm	Dry matter
DNA	Deoxyribonucleic acid
dv	Bulk volume element
dv^{α}	Volume element of the constituent φ^{α}
$\mathrm{d}\mathrm{v}^\mathrm{G}$	Volume element of the gas phase, representing the void volume which is permeable for the gas phase
$dV_{O\alpha}$	Volume element in the reference configuration
$d\mathbf{x}$	Differential line element in the actual configuration
$\mathrm{d}\mathbf{X}_{lpha}$	Differential line element in the reference configuration
$e^{()}, e^{()}$	Exponential function
$\hat{\mathbf{e}}^{\alpha}$	Internal energy supply term of the constituent φ^{α}
Е	Enzymes
Ε	Internal Energy
E _A	Activation energy in ARRHENIUS equation
E_m	Molar internal Energy

\mathbf{E}^{α}	Internal energy of the constituent φ^{α}
\mathbf{E}_{lpha}	Green strain tensor
ES	Enzyme-substrate complex
${\mathcal F}$	Set of field quantities
f()	Function of the quantity $()$
\mathbf{F}_{lpha}	Deformation gradient of the constituent φ^{α}
\mathbf{F}^+_{lpha}	Adjoint tensor of \mathbf{F}_{α}
FE, FEM	Finite Element, Finite Element Method
G	Gas
G	Gibbs energy
G_{col}	Collectable specific gas potential
G_{e}	Specific gas potential
G_m	Molar Gibbs energy
G_t	Cumulated specific gas production at the time t
$\bar{\mathrm{G}}_{\mathrm{J}}$	Partial molar Gibbs energy of the substance J
GAMBIT	CAD programme
$\operatorname{grad}(\ldots)$	Gradient of the quantity (\ldots) concerning actual configuration
Grad()	Gradient of the quantity () concerning reference configu- ration
Grad() h _{tot}	Gradient of the quantity () concerning reference configu- ration Total height
Grad() h_{tot} $\mathbf{h}^{\alpha}_{(0)}$	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0
Grad() h_{tot} $h^{\alpha}_{(0)}$ H	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy
Grad() h_{tot} $h^{\alpha}_{(0)}$ H H_m	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy Molar entropy
Grad() h_{tot} $h^{\alpha}_{(0)}$ H H_m H^{α}	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy Molar entropy Entropy of the constituent φ^{α}
Grad() h_{tot} $h^{\alpha}_{(0)}$ H H_m H^{α} \bar{H}_J	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy Molar entropy Entropy of the constituent φ^{α} Partial molar entropy of the substance J
Grad() h_{tot} $h_{(0)}^{\alpha}$ H H_m H^{α} \bar{H}_J HDPE	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy Molar entropy Entropy of the constituent φ^{α} Partial molar entropy of the substance J High density polyethylene
Grad() h_{tot} $h^{\alpha}_{(0)}$ H H_m H^{α} \bar{H}_J HDPE I	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy Molar entropy Entropy of the constituent φ^{α} Partial molar entropy of the substance J High density polyethylene Inert
Grad() h_{tot} $h_{(0)}^{\alpha}$ H H_m H^{α} \bar{H}_J HDPE I I	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy Molar entropy Entropy of the constituent φ^{α} Partial molar entropy of the substance J High density polyethylene Inert Identity tensor
Grad() h_{tot} $h_{(0)}^{\alpha}$ H H_m H^{α} \bar{H}_J HDPE I J	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy Molar entropy Entropy of the constituent φ^{α} Partial molar entropy of the substance J High density polyethylene Inert Identity tensor Joule
Grad() h_{tot} $h_{(0)}$ H H_m H^{α} \bar{H}_J HDPE I I J J_{α}	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy Molar entropy Entropy of the constituent φ^{α} Partial molar entropy of the substance J High density polyethylene Inert Identity tensor Joule Jacobian
Grad() h_{tot} $h_{(0)}^{\alpha}$ H H_m H^{α} \bar{H}_J HDPE I I J J_{α} \mathcal{K}	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy Molar entropy Entropy of the constituent φ^{α} Partial molar entropy of the substance J High density polyethylene Inert Identity tensor Joule Jacobian Set of known field quantities
Grad() h_{tot} $h_{(0)}$ H H_m H^{α} \bar{H}_J HDPE I I J J_{α} \mathcal{K} k	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy Molar entropy Entropy of the constituent φ^{α} Partial molar entropy of the substance J High density polyethylene Inert Identity tensor Joule Jacobian Set of known field quantities Empirical constant in a AIBA kinetic of microbial growth
Grad() h_{tot} $h_{(0)}$ H H_m H^{α} \bar{H}_J HDPE I J J_{α} \mathcal{K} k k	Gradient of the quantity () concerning reference configu- ration Total height moment of momentum of the constituent φ^{α} referred to the spatial point 0 Entropy Molar entropy Entropy of the constituent φ^{α} Partial molar entropy of the substance J High density polyethylene Inert Identity tensor Joule Jacobian Set of known field quantities Empirical constant in a AIBA kinetic of microbial growth Rate constant

k ₂	Rate constant of the forward reaction in a multi step reaction
k_{-1}	Rate constant of the backward reaction
k _{cat}	Rate constant of a catalytic reaction
\mathbf{k}^{lpha}	Resulting force vector on the constituent φ^{α}
К	Fourth constant in a EDWARDS kinetic of microbial growth
К	Equilibrium constant
К	Kelvin
К	Kinetic energy
K^{α}	Kinetic energy of the constituent φ^{α}
K ₀	Intrinsic permeability
K _I	Dissociation constant
K _I	Inhibition constant
K _M	MICHAELIS-MENTEN constant
K _n o	Organic saturation constant within the developed landfill model
K _{Pi}	Product inhibition constant
K _S	Substrate saturation constant
kg	Kilogram
$\mathrm{kg}_{\mathrm{dm}}$	Kilogram referred to dry matter
$\mathrm{kg}_{\mathrm{Org}}$	Kilogram referred to biodegradable organic matter
$\mathrm{kg}_{\mathrm{wm}}$	Kilogram referred to wet matter
1	Liter
l^{α}	Momentum of the constituent φ^α
$\hat{\mathbf{l}}^{lpha}$	Supply term of momentum of the constituent φ^{α}
ln()	Natural logarithm
L	Liquid
\mathbf{L}_{lpha}	Spatial velocity gradient
LDPE	Low density polyethylene
LG	Landfill gas
LOI	Loss of ignition
m	Mesophilic
m	Mass
m _{solvent}	Mass of the solvent
m^{α}	Mass of the constituent φ^{α}
$\hat{\mathbf{m}}^{\alpha}$	Mass supply term of the constituent φ^α

$m,\ m^2,\ m^3$	Meter, square meter and cubic meter
$\mathbf{m}^{lpha}_{(0)}$	Sum of all external moments
$\mathbf{\hat{m}}^{lpha}_{(0)}$	Sum of internal moments
М	Molar mass
MB	Methanogenic biomass
MBT	Mechanical-biological waste (pre-)treatment
ME	Metals
MI	Minerals
MSW	Municipal solid waste
mth	Month
() ⁿ	Level of exponent
n,n_1,n_2,n_i,n_J,n_k	Amount of substances, amount of substance 1, 2, i, J and ${\bf k}$
n^{α}	Volume fraction of the constituent φ^{α}
n_{0S}^{α}	Initial volume fraction of the constituent φ^{α}
n ^G	Volume fraction of the gas phase (permeable porosity)
n_{225}^{O}, n_{465}^{O}	Volume fraction of organic at point 225 and point 465 $$
n	Unit normal vector
N, N_0	Final cell number, initial cell number
$\rm Nm^3$	Standard cubic meter
NO	Native organics
0	Organic
\mathcal{P}	Set of independent process variables
р	Pressure
р	Psychrophilic
$\mathbf{\hat{p}}^{lpha}$	Local interaction force of the constituent φ^{α}
Р	Precipitation
Р	Product
PA	Polyamide
PE	Polyethylene
pН	pH-value
PP	Polypropylene
PS	Polystyrene
PU	Polyurethane
PVC	Polyvinyl chloride
q	Heat flux vector

\mathbf{q}^{lpha}	Heat flux vector of the constituent φ^{α}
$Q,\ Q_P,\ Q_V$	Heat, rate of heat under constant pressure, constant volume
\mathbf{Q}^{α}	Rate of heat of the constituent φ^α
\mathcal{R}	Set of free available quantities
$r,r_{\rm max}$	Rate of reaction, maximum rate of reaction
$r_{\rm b},r_{\rm f}$	Rate of backward reaction, rate of forward reaction
r^{α}	Internal heat source of the constituent φ^{α}
R, R^G	General gas constant
$\mathrm{R}^{\mathrm{G}}_{\mathrm{S}}$	Specific gas constant
RL	Richtlinie
RNA, rRNA	Ribonucleic acid, ribosomal ribonucleic acid
RVE	Representative volume element
S	Second
S	Inorganic solid phase
S	Substrate
S	Enthalpy
S_{m}	Molar enthalpy
$\bar{\mathrm{S}}_{\mathrm{J}}$	Partial molar enthalpy of the substance J
SD	Standard deviation
SI, SI-unit	International system of units
SM	Synthetic matter
t	Time
$t_{1/2}$	Half life
\mathbf{t}^{lpha}	Local surface force
Т	Temperature
T_{min},T_{max},T_{opt}	Minimum, maximum and optimum temperature
\mathbf{T}^{lpha}	Cauchy stress tensor of the constituent φ^{α}
ТАА	Technische Anleitung zur Lagerung, chemisch/physikalischen, biologischen Behandlung, Verbrennung und Ablagerung von besonders überwachungsbedürftigen Abfällen
TASI	Technische Anleitung zur Verwertung, Behandlung und sonstigen Entsorgung von Siedlungsabfällen
ТМ	Theory of mixture
TOC	Total organic carbon
TPM	Theory of porous media

u	Displacement vector
$\mathcal{V}_{()}$	Number of ()
v, <i>v</i>	velocity, velocity of a reaction
V	Volume
Vm	Molar volume
V^{α}	Partial volume of the constituent φ^{α}
$\bar{V}_{\rm H_2O}$	Partial molar volume of water
$\bar{\mathrm{V}}_{\mathrm{J}}$	Partial molar volume of the substance J
VFA	Volatile fatty acid
VS	Versus
\mathbf{w}_{GS}	Difference velocity between the gas phase and the solid phase
\mathbf{w}_{OS}	Difference velocity between the organic phase and the solid phase
W	Water
W	Watt
W	Work, rate of work
W^{α}	Rate of work of the constituent φ^{α}
\mathbf{W}_{lpha}	Skew symmetric part of the spatial velocity gradient \mathbf{L}_{α}
wm	Wet matter
xj	Mole fraction
x	Position vector in the actual configuration
\mathbf{x}'_{lpha}	Velocity of the constituent φ^{α}
\mathbf{x}''_{lpha}	Acceleration of the constituent φ^{α}
Х	Extensive state variable
X_{α}	Material point of the constituent φ^{α}
\mathbf{X}_{lpha}	Position vector of the constituent φ^α in the reference configuration
\bar{X}, \bar{X}_j	Partial molar quantity, partial molar quantity of the substance J
Υ	Yield coefficient
z[m]	Height (given in meter)

Chemical Compunds

C, C(s)	Carbon, in a solid state of aggregation (graphite)
$C_4,C_5,C_6,C_7,C_n\\$	Number of carbon atoms contained in a chemical compound
C_{Org}	Biodegradable organic carbon
Ca	Calcium
$CH_4, CH_4(g)$	Methane, in a gaseous state of aggregation
$\rm CH_3COO^-(aq)$	Acetate in a aqueous state of aggregation
$C_{\rm n}H_{\rm a}O_{\rm b}$	Unspecific organic compound
$C_5H_8O_4$	Hemicellulose
$\mathrm{C_6H_{10}O_5}$	Cellulose
$\mathrm{C_6H_{12}O_6}$	Glucose
$C_{12}H_{22}O_{11}(s)$	Saccharose in a solid state of aggregation
$\rm CO_2, \rm CO_2(g)$	Carbon dioxide, in a gaseous state of aggregation
$H_2(g)$	Hydrogen in a gaseous state of aggregation
$H_2O(g)$	Water in a gaseous state of aggregation
$H_2O(1)$	Water in a liquid state of aggregation
HS^{-}	Inorganic sulfur compound
К	Potassium
Mg	Magnesium
Ν	Nitrogen
N_2	Molecular nitrogen
Na	Sodium
NH_3	Ammonia
NH ₄ -N	Ammonium
NO ₂ -N	Nitrite
NO_3-N, NO_3^-	Nitrate
$O_2(g)$	Oxygen in a gaseous state of aggregation
Р	Phosphorus
S	Sulfur
SO_4^{2-}	Inorganic sulfur compound