Simulationsbasierter Ansatz zur Unterstützung der Bauproduktionsplanung

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

an der Fakultät für Maschinenbau des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von Dipl.-Ing. Dipl.-Wirt.-Ing. Mikko Börkircher

aus Mühlacker

Tag der mündlichen Prüfung: 13.05.2011

Hauptreferent: Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing.

Gert Zülch

Korreferent: Prof. Dr.-Ing. Volkhard Franz

Forschungsberichte aus dem Institut für Arbeitswissenschaft und Betriebsorganisation der Universität Karlsruhe

Herausgeber Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Gert Zülch

Band 40 - 2011

Mikko Börkircher

Simulationsbasierter Ansatz zur Unterstützung der Bauproduktionsplanung

Shaker Verlag

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Karlsruhe, Karlsruher Institut für Technologie, Diss., 2011

Copyright Shaker Verlag 2011 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-0168-6 ISSN 0940-0559

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort des Herausgebers

Im Bereich des Maschinenbaus werden bereits seit vielen Jahren rechnerunterstützte Verfahren zur Planung von Produktionssystemen eingesetzt. Die Bandbreite reicht dabei von einfachen Verfahren auf der Basis der Tabellenkalkulation über Warteschlangenmodelle bis hin zu Simulationsverfahren und Werkzeugen der so genannten Digitalen Fabrik. Wurden derartige Verfahren zunächst vorrangig im Bereich der Großserienfertigung genutzt, so lassen sich zumindest einige von ihnen, insbesondere die Simulation, auch für die Planung von Produktionssystemen zur Einzel- und Kleinserienfertigungen anwenden. Die Aufgaben von Simulationsstudien ist es vor allem, Engpässe oder auch Überkapazitäten bereits in der Planungphase zu erkennen und die Produktionsressourcen entsprechend anzupassen. Darüber hinaus können die Effektivität eines Produktionssystems in Folge schwankender Auslastungssituationen sowie Störungen im Produktionsablauf analysiert und die Auswirkungen anhand geeigneter Kennzahlen monetär und produktionslogistisch bewertet werden.

Da Simulationsverfahren die Produktionsprozesse im dynamischen Zusammenwirken der beteiligten Produktionsressourcen abbilden können, kommt ihnen eine besondere Bedeutung zu. Gegenüber statischen Verfahren wie der Tabellenkalkulation werden realistischere Aussagen möglich, weil die Konkurrenz der Vorgänge um begrenzte Ressourcen mit den daraus folgenden Behinderungen im Produktionsablauf implizit im Simulationsmodell enthalten ist und die Belastungen der Ressourcen durch Vorgänge nicht bloß numerisch aggregiert werden.

In der Praxis der Bauproduktion herrschen jedoch statische Planungsverfahren vor, beispielsweise auf der Basis der Tabellenkalkulation und der Netzplantechnik. Störungen im Bauablauf werden bei der Planung allenfalls in Form von Szenarien abgebildet. Simulationsverfahren und Werkzeuge der virtuellen Bauablaufplanung sind

zwar in einigen Ausprägungen vorhanden, haben aber den Wissenschaftsbereich erst kaum verlassen.

Diese Ausgangssituation wird in der vorliegenden Arbeit aufgegriffen und dabei das Ziel verfolgt, ein bestehendes Simulationsverfahren aus dem Wissenschaftsbereich, das bisher für die Untersuchung von Produktions- und Dienstleistungssystemen genutzt wird, für die Simulation von Bauabläufen zu erweitern. Für diesen Anwendungsbereich der Simulation ist dabei von Bedeutung, dass die Bauproduktion im Grundsatz eine Einzelproduktion darstellt, gleichartige Bauwerke aber dennoch durch unterschiedliche Abläufe realisiert werden können. Ein weiterer spezifischer Aspekt besteht darin, dass an der Erstellung eines Bauwerkes eine Vielzahl einzelner Gewerke beteiligt ist, die von selbstständigen Unternehmen durchgeführt und durch ein Generalunternehmen koordiniert werden. Typisch sind weiterhin die vielfältigen Störungsmöglichkeiten im Bauablauf, die zu einem gehörigen Teil nicht beeinflusst werden können, wie vor allem ungünstige klimatische Bedingungen. Weiterhin kommen Störungen durch unzulängliche Materiallieferungen, Ausführungsfehler und zeitliche Verzögerungen unterschiedlichster Herkunft in Betracht. Zusätzlich können die räumlichen Bedingungen verhindern, dass eigentlich gleichzeitig durchführbare Arbeitsvorgänge sequenziell durchgeführt werden müssen.

Die vorliegende Arbeit widmet sich gerade dem Aspekt der Störungen und ihres Einflusses auf den Bauablauf. Zu diesem Zweck wird ein Katalog von Ablaufstörungen entwickelt und der darin enthaltene Datenbestand dazu benutzt, Störungsszenarien zu generieren. Zielrichtung dieser Szenarien ist es, alternative Bauabläufe zu modellieren und diese hinsichtlich ihrer Robustheit gegenüber Störungen zu analysieren. Die Vorteilhaftigkeit dieses simulationsbasierten Ansatzes wird abschließend anhand von Ausbauarbeiten bei einem Reihenhausbau aufgezeigt. Ein weiteres Beispiel behandelt Instandhaltungsarbeiten in der Baustoffindustrie, womit dann die Anwendung auf den Bereich des Anlagenbaus ausgeweitet wird.

Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. G. Zülch

Inhaltsverzeichnis

				S	eite
1.	Han	dlungsb	edarf bei	der Unterstützung der Bauproduktions-	
	plan	ung			8
	1.1	Beson	derheiten (der Bauproduktion	8
	1.2	Defizi	te derzeiti	ger Planungsmethoden	13
		1.2.1		istische Planung von Bauproduktionen	13
		1.2.2		e Behandlung von Bauablaufstörungen	14
	1.3	Proble	mbeschrei	ibung und Zielsetzung der Arbeit	15
	1.4	Aufba	u der Arbe	eit und Vorgehensweise	17
2.	Stan	d der T	echnik		21
	2.1			g baubetrieblicher Prozesse und Ablauf-	
		struktı		8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21
				iffe "Bauablauf" und "Bauprozess"	22
			_	erung einer Baustelle in Ablaufabschnitte	25
				Elementarer Ablaufabschnitt "Vorgang"	25
			2.1.2.2	Systematik der Ablaufstrukturplanung	
				einer Baustelle	26
	2.2	Begrif	fsbestimm	nungen und Problemabgrenzung	28
				orbereitung im Bauwesen	29
		2.2.2		anung von Bauprojekten	32
		2.2.3	_	ing der Begriffe "Unsicherheit",	
				fe" und "Ungewissheit"	33
	2.3	Verfal		auablaufplanung	37
		2.3.1		nliche Vorgehensweise bei der Bau-	
			ablaufpla	_	37
		2.3.2	Spezielle	Forschungsansätze für die Bauablauf-	
			planung	<u> </u>	39
			2.3.2.1	PERT-Netzplantechnik	41
				Fuzzy-Methoden	41

		2.3.2.3 Pet	ri-Netze	43
		2.3.2.4 Sor	stige Ansätze	44
	2.3.3	Simulationsu	nterstützte Methoden zur Bauablauf-	
		planung		45
		2.3.3.1 Ang	gloamerikanische Forschungsansätze	46
		2.3.3.2 Det	itsche Forschungsansätze	51
2.4	Verfa	ren zur Bewe	rtung einer Bauproduktion	59
	2.4.1	Vergangenhe produktion	itsorientierte Bewertung der Bau-	60
	2.4.2	_	ine aggregierende Bewertung der	
		Bauproduktio	00 0	60
2.5	Organ		rbesserungspotenziale in der Bau-	
	produ		<i>2</i> 1	63
	2.5.1		der Terminplanung bei beschränk-	
		ten Ressource		63
	2.5.2	Verbesserung	des Informationsflusses und der	
		Kooperation	zwischen Baubeteiligten	64
	2.5.3	Verbesserung	der Arbeitsvorbereitung	65
2.6	Berüc	ksichtigung vo	n Bauablaufstörungen	66
2.7	Disku	ssion und Anfo	orderungen an ein neues Verfahren	
	zur Ba	uproduktions	olanung	68
	2.7.1	Anforderung	en an ein neues Planungsverfahren	69
	2.7.2	Anforderung	en an ein Bewertungsverfahren	71
	2.7.3	Anforderung	en an störungsrobuste Bau-	
		produktionen		73
2.8	Simul	ation als Werk	zeug zur Erkenntnisgewinnung	75
Kon	zent fü	· die Modellie	rung einer Bauproduktion	77
3.1			ilationsbasierten Planungsunterstüt-	
		m Baubetrieb		77
3.2			em "Baustelle"	79
3.3			Bauproduktion	80
			ng zwischen Bauauftrag und Bau-	
		produktion		81
	3.3.2	_	übergeordnete Sparten	82
			und zugeordnete Vorgänge	84

3.

		3.3.4	Berücksicl	htigte Zeitarten im Baubetrieb	86
				Auftragszeit eines Vorgangs	86
			3.3.4.2 I	Durchführungszeit eines Vorgangs	90
			3.3.4.3 I	Durchlaufzeit einer Bauproduktion	91
		3.3.5	Personal u	nd Qualifikation	95
		3.3.6	Kapazitäts	splanung im Baubetrieb	98
			3.3.6.1 I	Bestimmung des Kapazitätsbedarfs und	
			-	-bestands	99
			3.3.6.2 I	Kapazitätsabstimmung zur Deckung vor	ı
			I	Kapazitätsbedarf und –bestand	102
	3.4	Mode	lierung vor	n Bauablaufstörungen	103
		3.4.1	Definition	von Bauablaufstörungen	104
			3.4.1.1 I	Der Begriff "Störung"	104
			3.4.1.2 U	Ursachen- und wirkungsorientierte	
			I	Definitionen	104
		3.4.2		erung von Bauablaufstörungen	105
			3.4.2.1 U	Ursachen für Bauablaufstörungen	105
			3.4.2.2	Auswirkungen von Bauablaufstörungen	107
		3.4.3	Ansatz zur	r Modellierung von Bauablaufstörungen	
			3.4.3.1	Störungen und Störungskategorien	109
			3.4.3.2	Zwischenankunftszeiten und Störungs-	
			(dauern	110
4.	Met	hodik z	ur Untersuc	chung der Bauproduktion	114
	4.1		riotechnik		114
		4.1.1	Verwendu	ng von Szenarien	114
		4.1.2	Generierun	ng von Störungsszenarien	115
		4.1.3	Generierun	ng von Zufallszahlen	117
		4.1.4	Stochastis	che Ströme von Bauablaufstörungen	118
	4.2	Mode	lierung vor	n Bauablauf-Alternativen	119
	4.3	Sensit	ivitätsanaly	se zur Untersuchung des Produktions-	
		systen	ns "Baustell	le"	122
		4.3.1	Definition	und Fragestellungen der Sensitivitäts-	
			analyse		122
		4.3.2	Robustheir	tsuntersuchungen im Baubetrieb	123

5.	Entv	vicklun	g eines Bewertungskonzeptes	126
	5.1	Begrü	ndung für das Bewertungskonzept	126
	5.2	Anfor	derungen an das Bewertungskonzept	127
	5.3	Baulo	gistische Bewertung	129
		5.3.1	Durchlaufzeit	129
		5.3.2	Termintreue	134
		5.3.3	Personalauslastung	135
	5.4	Monet	täre Bewertung anhand des simulierten Nutz-	
		kosten	satzes	139
6.	Real	isierun	g eines simulationsbasierten Verfahrens zur Unter-	
	stütz	rung de	r Bauproduktion	146
	6.1	Das of	ojektorientierte Simulationsverfahren OSim-BAU	146
	6.2	Aufba	u des Simulationsverfahrens OSim	148
		6.2.1	Integriertes Objektmodell zur durchlaufplan-	
			orientierten Simulation von Produktionssystemen	149
		6.2.2	1 &	151
			Notationsform der <i>UML</i>	153
		6.2.4	Benutzungsoberfläche des Simulationsverfahrens	155
	6.3		u eines Störungskatalogs für Bauablaufstörungen	156
	6.4	Model	llierung eines Bauablaufs in OSim-BAU	160
		6.4.1		160
			Modellierung baubetrieblicher Besonderheiten	163
		6.4.3	Modellierung von Bauablaufstörungen	167
7.	Syst	ematisc	che Simulationsstudien mit dem Verfahren OSim-	
	BAU			170
	7.1		der systematischen Simulationsstudien und	
			chsdesign	171
			Ziele der Simulationsstudien	171
			Versuchsdesign	172
	7.2		1 "Sensitivitätsuntersuchung"	176
			Aufgabenstellung der Studie 1	176
			Variation von Störungsparametern	177
			Signifikante Einflüsse der Störungsparameter	182
	7.3	Studie	2 "Robustheitsuntersuchung"	189

		7.3.1	Aufgabenstellung der Studie 2	189		
		7.3.2	Definition der Variationskoeffizienten	190		
		7.3.3	Simulationsergebnisse	196		
	7.4		3 "Bauablaufstrukturuntersuchung"	202		
		7.4.1	Aufgabenstellung der Studie 3	202		
		7.4.2		203		
		7.4.3		204		
	7.5	Verdic	chtung der Simulationsergebnisse zu Kernaussager	n 207		
		7.5.1	Effekte von Bauablaufstörungen auf die Ziel-			
			erreichungsgrade	207		
		7.5.2	Bedeutung der Variationskoeffizienten für			
			Eingangs- und Ausgangsvariablen	209		
		7.5.3	Parallelitäts- und Vernetzungsgrad einer Bau-			
			ablauf-Alternative	209		
8.	Praxiseinsatz des Verfahrens					
	8.1	Studie	"Ausbauarbeiten im Reihenhausbau"	211		
		8.1.1	Beschreibung des Anwendungsbeispiels	211		
		8.1.2	Dokumentierte Störungsdauern und Verteilungs-			
			typen	214		
		8.1.3	Verifizierung und Validierung des Modells	218		
		8.1.4	Simulation von Bauablauf-Alternativen			
			des Gewerks "Betonfertigteile"	220		
	8.2	Studie	"Instandhaltung eines Kalkdrehrohrofens"	225		
		8.2.1	Beschreibung des Untersuchungsobjektes	226		
		8.2.2	Simulationsergebnisse	230		
	8.3	Schlus	ssfolgerungen aus den Pilotstudien	237		
9.	Zusammenfassung und weiterführende Aspekte 2					
	9.1		nisse der vorliegenden Arbeit	239		
	9.2	Ausbli	ick auf weiterführende Forschungsaktivitäten im			
		Baube		242		
		9.2.1	Ganzheitlicher Planungsansatz im Sinne einer			
			Digitalen Baustelle	242		
		9.2.2	Kapazitätsplanung im Multiproiektmanagement	243		

		9.2.3	Übergang vom Störungskatalog zur simulations- unterstützten FMEA	244
10.	Quel	lenverz	zeichnis	246
	10.1	Literat	ur	246
	10.2	Verwe	ndete Software	278
11.	Anha	ang		279
	11.1	Daten	zur Simulation einer Baustelle	279
		11.1.1	Grundlegender Bauablauf	279
		11.1.2	Einteilung und Erfassung von Störungen	280
		11.1.3	Ermittelte Ist-Zeiten "Reihenhausbau"	282
		11.1.4	Durchlaufpläne "Reihenhausbau"	305
	11.2	Model	lierte Bauablauf-Alternativen	313
		11.2.1	Durchlaufpläne zur Zusammenarbeit der	
			Gewerke "Trockenbau" und "Elektroarbeiten"	314
		11.2.2	Durchlaufpläne des Gewerks "Betonfertigteile"	315
	11.3	Algori	thmus zur Generierung von Störungsszenarien	318
		11.3.1	Materialbedingte Störungen	318
		11.3.2	Prozess- und personalbedingte Störungen	319
	11.4	Daten	zur Simulation von Instandhaltungsarbeiten	320
		11.4.1	Durchlaufpläne der Simulationsstudie	321
			Vollfaktorieller Versuchsplan	323
	11.5	Simula	ationsergebnisse der Zusammenarbeit der Gewerke	324
		11.5.1	Daten der Störungsszenarien	326
		11.5.2	Variationen von Störungsparametern beim	
			Ausgangsmodell	327
		11.5.3	Simulationsergebnisse für gleich- und normal-	
			verteilte Zwischenankunftszeiten	328
		11.5.4	Ausgangsmodell versus Ablauf-Alternativen der	
			Zusammenarbeit der Gewerke	330
			Ergebnisse von Varianzanalysen	332
			Signifikanz der Zielerreichungsgrade	335
	11.6		ationsergebnisse der Studie "Ausbauarbeiten im	
			nhausbau"	336
		11.6.1	Vernetzungs- und Parallelitätsgrade	336

11.6.2 Variationskoeffizienten der Eingangs- und	
Ausgangsvariablen	338
11.7 Simulationsergebnisse der Studie "Instandhaltung eines	
Kalkdrehrohrofens"	339
11.8 Begriffsdefinitionen zu Bauablaufstörungen	341
11.9 Zeitarten nach REFA	342
12. Verzeichnis der Formelzeichen	344