Charakterisierung und rationale Immobilisierung von Lipasen in biphasischen Reaktionssystemen

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom Biologe

Andreas Buthe

aus Steinfurt

Berichter: Universitätsprofessor Dr.-Ing. Winfried Hartmeier Universitätsprofessor Dr.-Ing. Jochen Büchs

Tag der mündlichen Prüfung: 04.07.2006

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Berichte aus der Biotechnologie

Andreas Buthe

Charakterisierung und rationale Immobilisierung von Lipasen in biphasischen Reaktionssystemen

D 82 (Diss. RWTH Aachen)

Shaker Verlag Aachen 2006

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Aachen, Techn. Hochsch., Diss., 2006

Copyright Shaker Verlag 2006 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN-10: 3-8322-5516-8 ISBN-13: 978-3-8322-5516-9 ISSN 1434-4556

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/95 96 - 0 • Telefax: 02407/95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Diese Arbeit entstand im Rahmen meiner Beschäftigung als wissenschaftlicher Mitarbeiter am Lehrstuhl für Biotechnologie der RWTH Aachen.

Mein besonderer Dank gilt Herrn Prof. Winfried Hartmeier und Frau Dr. Marion Ansorge-Schumacher für die Überlassung des interessanten Themas und die exzellente Unterstützung bei der Durchführung dieser Arbeit. Für die Übernahme des Koreferates danke ich Herrn Prof. Jochen Büchs, der in fruchtbaren Diskussionen maßgeblich zum Gelingen dieser Arbeit beitrug. Ebenso ist der Deutschen Forschungsgemeinschaft für die finanzielle Förderung dieser Arbeit innerhalb des SFB 540 "Modellgestützte experimentelle Analyse kinetischer Phänomene in mehrphasigen fluiden Reaktionssystemen" zu danken.

Des Weiteren möchte ich mich bei Tobias Recker, Lars Wiemann, Anne van den Wittenboer, Marco Schlepütz, Mathias Klein, Susanne Dreyer, Meike Beer, Thomas Somrak und Alice Kapitain herzlich bedanken, die im Rahmen ihrer Diplom- bzw. Bachelorarbeiten meine Ideen mit unermüdlichem Einsatz und großer Begeisterung umsetzten. Darüber hinaus danke ich dem Deutschen Akademischen Austauschdienst für die im Rahmen des VIGONI-Projektes und der "Acciones Integrada" ermöglichten Auslandsaufenthalte sowie in diesem Zusammenhang Dr. Paolo Braiuca, Prof. Andrés Alcantara und Prof. Francesco Molinari. Für die zahlreichen fachlichen Anregungen und kritischen Diskussionen in inspirierender Atmosphäre, die mir die italienische und spanische Lebensart näher brachte, gilt mein besonderer Dank Fabrizio Sibilla und Dr. Pablo Domínguez de Maria. Natürlich profitierte diese Arbeit auch von der herzlichen Arbeitsatmosphäre am Lehrstuhl für Biotechnologie, wofür allen Mitarbeitern herzlich gedankt sei.

Ganz besonders möchte ich meine Dankbarkeit gegenüber meinen Eltern betonen, die in unvergesslicher Art und Weise die Voraussetzungen für ein erfolgreiches Studium geschaffen haben!

Inhaltsverzeichnis

1.	Ein	leitung	1
1.	.1	Enzyme – wertvolle Werkzeuge in der Biotechnologie	1
1.	.2	Lipasen	3
1.	.3	Technische Nutzung von Lipasen	7
	1.3.	1 Einsatzspektrum	7
	1.3.	2 Reaktionssysteme für nicht-konventionelle Medien	9
1.	.4	Rationaler Einsatz von Biokatalysatoren – Immobilisierung	12
	1.4.	1 Immobilisierungsverfahren	12
	1.4.	2 Immobilisierung von Lipasen	15
	1.4.	Probleme beim technischen Einsatz von Lipase-Immobilisaten	17
1.	.5	Aufgabenstellung	20
2.	Ma	terial und Methoden	22
2.	.1	Chemikalien/Enzyme	22
2.	.2	Geräte	23
2.	.3	Gaschromatographische Analyse	
2.	.4	Proteinmengenbestimmung nach BRADFORD [1976]	
2.	.5	Massentransfer im nicht-gelstabilisierten Zweiphasensystem	
2.	.6	pH-Optimum der lipasenkatalysierten Veresterung	
	2.6.		
	2.6.		
	2.6.		
2.	.7	Einfluss der Grenzfläche auf die lipasenkatalysierte Reaktion	
	2.7.	8	
	2.7.		
	2.7.	P	
	.8	"Molecular modelling" der Enzymoberfläche	
2.	.9	Immobilisierung in Siliconsphären als Statische Emulsion	
2.	.10	Immobilisierung nach der Sol-Gel-Technik	
	.11	Bestimmung des Durchmessers der Immobilisate	
2.	.12	Charakterisierung der Statischen Emulsion	
	2.12	· · · · · · · · · · · · · · · · · · ·	
	2.12	2.2 Abrieb und Elastizität	37

	2.12.3	Untersuchungen zum Massentransfer	. 38
	2.12.4	Evaporation der emulgierten wässrigen Phase	. 39
	2.12.5	Ausbluten	. 39
	2.13 Lips	asenkatalysierte Synthese von Octyloctanoat	. 39
	2.14 Lips	asenkatalysierte Synthese von Fettsäureethylhexylestern	. 40
	2.15 Lipa	asenkatalysierte Synthese von Propyllaurat	. 42
	2.16 Lipa	asenkatalysierte Racematspaltung von Benzoin	. 42
3.		sse und Diskussion	
	3.1 pH-	Optimum der lipasenkatalysierten Estersynthese	. 45
	3.1.1	Wahl und Charakterisierung eines geeigneten Untersuchungssystems	. 46
	3.1.2	pH-Optima	. 49
	3.1.3	Einfluss der Propionsäurekonzentration auf das pH-Aktivitätsprofil	. 51
	3.1.3.1	I = pH-Aktivit"ätsprofil bei drei verschiedenen Gesamts"äurekonzentrationen .	. 51
	3.1.3.2	2 Substratkinetik der protonierten Säure am pH-Optimum	. 53
	3.1.4	Extrapolation der pH-Optima	. 55
	3.1.5	Mechanistische Erklärung für das pH-Optimum der Veresterung	. 58
	3.1.6	Praktische Relevanz	. 61
	3.2 Bed	leutung der Grenzfläche für die lipasenkatalysierte Reaktion	. 64
	3.2.1	Katalytische Aktivität und die spezifische Grenzfläche	. 66
	3.2.1.1	l Enzym-Alginatkugeln – Variation der spezifischen Grenzfläche	. 66
	3.2.1.2	2 Variable spezifische Grenzfläche	. 68
	3.2.1.3	3 Konstante spezifische Grenzfläche	. 72
	3.2.1.4	4 Variable spezifische Grenzfläche im gelstabilisierten Zweiphasensystem .	. 75
	3.2.1.5	5 Einfluss der Wasseraktivität bei variabler spezifischer Grenzfläche	. 77
	3.2.1.6	6 Hydrolyse von Butylpropionat bei variabler spezifischer Grenzfläche	. 79
	3.2.2	"Molecular Modelling" der Enzymoberfläche	. 81
	3.2.3	Thermodynamik der Esterbildung im fluiden Zweiphasensystem	. 85
	3.2.4	Hypothese über die Vorgänge an der Grenzfläche	. 88
	3.2.5	Praktische Relevanz	. 90
	3.3 Ent	wicklung einer Immobilisierungstechnik	. 92
	3.3.1	Einfluss von Wasser auf die Produktivität biphasischer Reaktionssysteme	. 93
	3.3.2	Erzeugung einer Statischen Emulsion in Silicon	. 96
	3.3.3	Aktivität von in Statischer Emulsion immobilisierten Lipasen	. 99

	3.3.3.	Aktivität der Statischen Emulsion	100
	3.3.3.2	P. Vergleich mit Sol-Gel-Immobilisaten	102
	3.4 Cha	rakterisierung der Statischen Emulsion	105
	3.4.1	Katalytische Stabilität	105
	3.4.1.	Wiederverwendbarkeit	105
	3.4.1.2	? Ausbluten	106
	3.4.1	3 Lagerung	107
	3.4.2	Abriebstabilität und Elastizität	108
	3.4.3	Quellung in Hexan	110
	3.4.4	Massentransfer und Verteilung	111
	3.5 Anv	wendung der Statischen Emulsion für die Synthese von Fein- und	
]	Bulkchemi	kalien	117
	3.5.1	Lipase von Thermomyces lanuginosa für die Synthese von Esterölen	117
	3.5.1.	! Sol-Gel	119
	3.5.1.2	Statische Emulsion	120
	3.5.1	3 Veresterung von Fettsäuren aus Nebenproduktfraktionen der	
	Biodie	selproduktion	121
	3.5.2	Lipase B von Candida antarctica für die Synthese von Propyllaurat	123
	3.5.3	Lipase von Pseudomonas stutzeri für die Synthese von S-Benzoinbutyr	at127
4.	Zusamn	nenfassung	134
5.	Literatu	r	136