Hochgeschwindigkeitsfräsen von hochwarmfesten Stählen mit Minimalmengenschmierung

Dem Fachbereich Maschinenbau an der Technischen Universität Darmstadt

zur

Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) $genehmigte \label{eq:continuous}$

Dissertation

vorgelegt von
Dipl.-Ing. Wu Sun
aus Shuangyashan (VR China)

Berichterstatter: Prof. Dr.-Ing. H. Schulz

Mitberichterstatter: Prof. Dr.-Ing. E. Abele

Prof. Dr.-Ing. Dipl. Wirtsch.-Ing. P. Groche

Tag der Einreichung: 09.11.2004
Tag der mündlichen Prüfung: 15.12.2004

Darmstadt 2005

D17

Darmstädter Forschungsberichte für Konstruktion und Fertigung

Wu Sun

Hochgeschwindigkeitsfräsen von hochwarmfesten Stählen mit Minimalmengenschmierung

D 17 (Diss. TU Darmstadt)

Shaker Verlag Aachen 2005

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: Darmstadt, Techn. Univ., Diss., 2004

Copyright Shaker Verlag 2005 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-3789-5 ISSN 1430-7901

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail: info@shaker.de

Vorwort des Herausgebers

Kühlschmierstoffe sind die wichtigsten Fertigungshilfsstoffe bei der zerspanenden Bearbeitung. Neben der Kühl- und Schmierfunktionen erfüllen sie auch so wichtige Aufgaben wie z. B. die Wärmeabfuhr, den Späneabtransport, den Korrosionsschutz und ähnliche.

Sowohl aus ökologischen als auch aus ökonomischen Aspekten wird daher eine Reduzierung der Kühlschmierstoffe angestrebt. Die Minimalmengenschmierung ist ein vielversprechender Lösungsweg zur Erzielung eines Optimums zwischen Wirtschaftlichkeit und Umweltschutz.

Im vorliegenden Buch wird die Anwendbarkeit der MMS beim Hochgeschwindigkeitsfräsen von hochwarmfesten Stählen untersucht. Hinweise zur Gestaltung von Minimalmengen-Schmiersystemen werden gegeben.

Darmstadt, Februar 2005

Prof. Dr.-Ing. H. Schulz

Vorwort des Autors

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Fachgebiet für Produktionsmanagement, Technologie und Werkzeugmaschinen (PTW) der Technischen Universität Darmstadt.

Dem ehemaligen Leiter des Fachgebietes, Herrn Prof. Dr.-Ing. H. Schulz, danke ich für das mir entgegengebrachte Vertrauen und die Freiräume zur Ausgestaltung meiner Tätigkeit an seinem Fachgebiet. Seine Gesprächsbereitschaft und Vorschläge haben zum Gelingen dieser Arbeit beigetragen.

Herrn Prof. Dr.-Ing. E. Abele und Herrn Prof. Dr.-Ing. Dipl. Wirtsch.-Ing. Peter Groche danke ich für die engagierte Übernahme der Mitberichterstattung.

Ferner gilt mein Dank den Kollegen, die mir Diskussionspartner in der Zeit der Ideensammlung und -umsetzung waren. Hierbei möchte ich den ehemaligen Kollegen, Herrn Dr.-Ing. Leping Zhu und Herrn Dr.-Ing. Thorsten Finzer, für ihre Hilfe bei meinem Leben in Deutschland und bei der Forschung am PTW besonders danken. Herrn Dipl.-Ing. Alexander Versch danke ich besonders für die erfolgreiche Diskussion und sprachliche Korrektur dieser Arbeit.

Mein Dank gilt auch Frau Kuhn vom PhM-Institut, Herrn N. Damaschke vom SLA-Institut der TU Darmstadt, Frau Link von der Link GmbH, Herrn Biegert von der Kieninger GmbH, Herrn Lamers von der Steidle GmbH, Herrn Böbel von der bielomatik Leuze GmbH & Co KG, und Herrn Glock von der GAT mbH für die fachliche Diskussion und die Unterstützungen zu den Vorbereitungen und Durchführungen der Versuche.

Mein besonderer Dank gilt meinen Eltern, meinen Kommilitonen, Herrn Magister-Ing. Yigong Sun und Herrn Bachelor-Ing. Zhe Liu, die mir meine Weiterbildung in Deutschland ermöglicht und unterstützt haben.

Abschließend danke ich ganz herzlich meiner Frau Chenbei Chen für ihre Unterstützung und ihr Verständnis in vergangenen Jahren für fehlende gemeinsame Aktivitäten, bedingt durch meine Abwesenheit während dieser Zeit.

Inhaltsverzeichnis I

0 Inhaltsverzeichnis

0		Inhaltsverzeichnis	1
	0.1	Formelzeichen und Abkürzungen	V
	0.1.	1 Formelzeichen	V
	0.1.2	2 Abkürzungen	V
1		Einleitung	1
2		Stand der Forschung und Technik	2
	2.1	Einsatz von KSS in der spanenden Fertigung	2
	2.2	Trockenbearbeitung	6
	2.3	Minimalmengenschmierung (MMS)	9
	2.3.	1 Definition der MMS	9
	2.3.2	2 Verfügbare MMS-Systeme	10
	2.3	3 Zuführung und Dosierung	12
	2.3.4	4 Tropfengröße des Schmiermittels	17
	2.3.	5 Kühlschmierstoffe für die MMS	19
	2.3.0	6 Vergleich der MMS mit Trocken- und Nassbearbeitung	20
3		Problematik und Zielsetzung	23
4		Modell zur Ermittlung des optimalen MMS-Einsatzes	25
	4.1	Grundlagen der künstlichen neuronalen Netze (KNN)	25
	4.1.	1 Definition	25
	4.1.2	2 Eigenschaften und Fähigkeiten	25
	4.1.	3 Einsatzmöglichkeiten von KNN in der Produktion	26
	4.2	Festlegung der relevanten Ein- und Ausgangsdaten und Gewinnung von Trai	ningsdaten
			26

	4.2.1	Eingangsdaten	26
	4.2.2	Ausgangsdaten	29
	4.2.3	Gewinnung der Trainingsdaten	30
		wicklung des technologischen Berechnungsmodells mit Hilfe der	
	neu	ronalen Netze	
	4.3.1	Festlegung der Schichtzahl	30
	4.3.2	Festlegung der Neuronenzahl jeder Schicht	30
	4.3.3	Festlegung von Aktivierungsfunktionen für jede Schicht	30
	4.3.4	Entwicklung des Berechnungsmodells	30
5	Ve	rsuchsbeschreibung	32
	5.1 Ver	suchseinrichtungen	32
	5.1.1	Werkstücke	32
	5.1.2	Werkzeuge	33
	5.1.3	Vorgehensweise	35
	5.2 Mes	sstechnik	36
	5.2.1	Elektronenstrahl-Mikroanalyse (ESMA)	36
	5.2.2	Phase-Doppler-Messgerät	36
6	Zei	rspanungsuntersuchungen	37
	6.1 Ein:	fluss der Einstellung des MMS-Systems	37
	6.1.1	Vergleich verschiedener MMS-Geräte	37
	6.1.2	Einfluss der MMS-Zuführungsrichtung (bei äußerer Zuführung)	40
	6.1.3	Einfluss des Düsenabstands	44
	6.2 Ein	fluss der Bearbeitungsparameter auf die MMS-Bearbeitung	45
	621	711 zerspanender Werkstoff	45

	6.2.2	Schneidstoffe und Beschichtungen	48
	6.2.3	Chemische und physikalische Eigenschaften der Schmierstoffe	51
	6.2.4	Schnittgeschwindigkeit	53
	6.3 I	Einfluss des MMS-Systems	54
	6.3.1	Luftdruck und -menge bei der Trockenbearbeitung	54
	6.3.2	Schmiermittelmenge	55
	6.4	Optimierung des MMS-Einsatzes	57
	6.4.1	Einfluss der Druckluft beim MMS-Einsatz	62
	6.4.2	Tropfengröße des Schmiermittels	70
	6.4.3	Einfluss der Werkzeugsteifigkeit	74
	6.4.4	Einfluss der Schnittgeschwindigkeit	77
	6.5	Optimaler MMS-Einsatz für weitere Werkstoff/Werkzeug-Kombinationen	83
	6.5.1	Werkstoff 1.2083 und Werkzeug A	83
	6.5.2	Werkstoff 1.2083 und Werkzeug B	85
	6.5.3	Werkstoff 1.2379 und Werkzeug A	87
	6.5.4	Werkstoff 1.2379 und Werkzeug B	88
	6.5.5	Vergleich des MMS-Optimums bei verschiedenen Werkzeugen und We	erkstoffen
			90
	6.5	.5.1 Einfluss der Werkzeuge bei gleichen Werkstoffen	90
	6.5	.5.2 Werkstoffeinfluss bei gleichen Werkzeugen	95
	6.6 I	azit der Versuchsergebnisse	100
7	,	Validierung des Berechnungsmodells	103
8		Zusammenfassung und Ausblick	106
	8.1	Zusammenfassung	106

IV Inhaltverzeichnis

8.2 A	usblick	108
9 L	iteratur	110
10 A	nhang	133
10.1 V	ersuchsmaschinen	133
10.1.1	5-achsige HSC-Fräsmaschine	133
10.1.2	3-achsige Bearbeitungszentrum: OKUMA MX 45-VAE	134
10.2 M	MS-Geräte	135
10.2.1	microjet, Typ MKS-G 100	135
10.2.2	Lubrimat® L 60	136
10.2.3	INNOJECT-Typ M Serie 402	137
10.3 M	essgeräte	137
10.3.1	Elektronenstrahl-Microanalyse (ESMA)	137
10.3.2	Phase-Doppler-Messgerät	138

0.1 Formelzeichen und Abkürzungen

0.1.1 Formelzeichen

Formelzeichen	Dimension	Bedeutung
a_{e}	[mm]	Zeilenbreite
a_p	[mm]	Zustelltiefe
A	[mm]	Düsenabstand
A_{min}	[mm]	Minimaler Düsenabstand
d	[mm]	Düsendruchmesser
f_z	[mm]	Zahnvorschub
P	[Pa]	Luftdruck
R_z	[µm]	Gemittelte Rautiefe
T_{max}	[°C]	Maximale Einsatztemperatur
VB_{max}	[µm]	Maximale Verschleißmarkenbreite
$\mathbf{v}_{\mathbf{c}}$	[m/min]	Schnittgeschwindigkeit
$\mathbf{v}_{\mathbf{f}}$	[m/min]	Vorschubgeschwindigkeit
λ	[W/mK]	Wärmeleitfähigkeit
μ	[-]	Reibwert gegen Stahl
ω	[U/min]	Drehfrequenz

0.1.2 Abkürzungen

Abkürzungen	Bedeutung
3D	dreidimensional
ANNs	Artificial neural networks
BP	Backpropagation
BRD	Bundes Republik Deutschland
ESMA	Elektronenstrahl-Mikroanalyse
НВ	Brinellhärte
HRC	Rockwellhärte
HSC	High Speed Cutting
HSK	Kegel-Hohlschaft

HV Vickershärte

KH Kohonen-Feature-Map
KNN Künstliche neuronale Netze
MLP Multi Layer Perception
KSS Kühlschmierstoff

L/D Länge/Durchmesser-Verhältnis
LDA Laser-Doppler-Messtechnik
MMKS Minimalmengenkühlschmierung
MMS Minimalmengenschmierung

NC Numeric Control

PDA Phaser-Doppler-Messtechnik

PTW Das Fachgebiet für Produktionsmanagement, Technologie

und Werkzeugmaschinen (bis April 2001: Das Fachgebiet für Produktionstechnik und Spanende Werkzeug-maschinen)

der Technische Universität Darmstadt

PVD Physical Vapor Deposition

R Werkzeugradius
TaNbC Tantalniobcarbid
TiAlN Titanaluminiumnitrid

TiC Titancarbon
TiN Titannitrid
WC Wolframkarbid