

Elektrotechnisches Institut Lehrstuhl Elektrische Maschinen und Antriebe

Herausgeber: Univ.-Prof. Dr.-Ing. Wilfried Hofmann

Nico Remus

Netzfehlerrobuste hochsetzende Stromrichteranordnung mit dem Matrixumrichter für Windkraftanlagen

Technische Universität Dresden

Netzfehlerrobuste hochsetzende Stromrichteranordnung mit dem Matrixumrichter für Windkraftanlagen

Dipl.-Ing. Nico Remus

An der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden

zur Erlangung des akademischen Grades eines

Doktoringenieurs (Dr.-Ing.)

genehmigte Dissertation.

Vorsitzender:	Prof. DrIng. habil. Jan Meyer
Gutachter:	Prof. DrIng. Wilfried Hofmann
	Prof. DrIng. Hans-Günter Eckel
Einreichung:	18. Januar 2024
Verteidigung:	4. Juli 2024
Einreichung: Verteidigung:	18. Januar 20244. Juli 2024

Dresdner Schriftenreihe zu elektrischen Maschinen und Antrieben

Band 26

Nico Remus

Netzfehlerrobuste hochsetzende Stromrichteranordnung mit dem Matrixumrichter für Windkraftanlagen

Shaker Verlag Düren 2024

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Dresden, Techn. Univ., Diss., 2024

Copyright Shaker Verlag 2024 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

 Print-ISBN
 978-3-8440-9715-3

 PDF-ISBN
 978-3-8440-9815-0

 ISSN
 1869-8190

 eISSN
 2944-5779

 https://doi.org/10.2370/9783844098150

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren Telefon: 02421/99011-0 • Telefax: 02421/99011-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrstuhl Elektrische Maschinen und Antriebe der Technischen Universität Dresden. Ohne die Unterstützung vieler Personen wäre sie nicht möglich gewesen. An dieser Stelle möchte ich mich herzlich bei ihnen bedanken.

Besonderer Dank gilt Univ.-Prof. Dr.-Ing. Wilfried Hofmann. Durch seine Unterstützung wurde das Forschungsvorhaben erst möglich und er schuf eine Arbeitsumgebung, welche immer neue Anregungen in der wissenschaftlichen Ausarbeitung und die Voraussetzungen für komplexe experimentelle Versuche bot.

Danken möchte ich außerdem Prof. Dr.-Ing. Hans-Günter Eckel des Lehrstuhls Leistungselektronik und Elektrische Antriebe der Universität Rostock für die Annahme der Rolle des zweiten Gutachters und für das Interesse an dieser Arbeit.

Desweiteren danke ich meinen ehemaligen Kollegen des Lehrstuhls für elektrische Maschinen und Antriebe der Technischen Universität Dresden. In einem zu jeder Zeit guten Arbeitsklima haben zahlreiche, oft tiefgehende Diskussionen oder organisatorische Unterstützung zu dem Gelingen der Arbeit beigetragen. Allem Vorangestellt möchte ich meinem Büronachbarn Martin Leubner danken, der sich die Aufgabe des Aufbaus des hochsetzenden direkten Matrixumrichters mit mir teilte. Ohne seine Mitwirkung wäre die Entwicklung eines am Ende solch zuverlässigen Umrichter-Prototypen nicht möglich gewesen. An dieser Stelle ist auch den Mitarbeitern der Institutswerkstatt zu danken, welche den Aufbau des Prototypen und des Versuchsstandes realisierten.

Auch den Studenten möchte ich danken, die mit ihren Diplom- oder Studienarbeiten, aber auch als studentische Hilfskraft einen wichtigen Beitrag zu der Arbeit geliefert haben.

Schließlich möchte ich meiner Familie danken für ihre Unterstützung des Promotionsvorhabens und ihr Verständnis, wenn sie mir hin und wieder den Rücken freihalten mussten.

Kurzfassung

Windkraftanlagen (WKA) tragen mit 49% den größten Anteil der erneuerbaren Energien im deutschen Strom-Mix. Anlagen mit doppelt gespeistem Asynchrongenerator (DASG) sind neben Anlagen mit fremderregter Synchronmaschine wegen ihrer Wirtschaftlichkeit weit verbreitet. Die mangelnde Fähigkeit, Netzfehler zu durchfahren und gleichzeitig das Netz in seiner Stabilität zu unterstützen, führt jedoch zum Rückgang des Aufbaus neuer WKA mit dem DASG. Diese Arbeit schlägt eine Generatoranordnung des DASG vor, bei welcher der hochsetzende direkte Matrixumrichter (HDMU) zum Einsatz kommt. Die neue Generatoranordnung erlaubt es, den Generator auch bei tiefen Netzspannungseinbrüchen vollständig kontrollierbar zu betreiben und das Netz durch Einspeisen von Blindleistung zu unterstützen.

Zuerst wird die Regelung des HDMU als Vollumrichter entwickelt, der einen Käfigläufer-Asynchrongenerator (ASG) speist. Während darauf Wert gelegt wird, dass die etablierte feldorientierte Regelung elektrischer Maschinen möglichst unverändert eingesetzt werden kann, wird die Regelstruktur für den HDMU vorgestellt, welche die freie Einstellung des Netzblindstromes innerhalb der Grenzen des HDMU erlaubt. Zusätzlich sorgt die aktive Dämpfung des Netz-filters für das Wegfallen von passiven Dämpfungsmaßnahmen und den damit verbundenen Nachteilen. Auf dieser Struktur baut die Regelung der neuen Generatoranordnung mit dem DASG auf, wobei die Aufschaltung der Statorklemmen auf die Kondensatoren des Netzfilters abweichende und zusätzliche Maßnahmen der Regelung nach sich zieht.

Nach dem experimentellen Nachweis der Funktionsfähigkeit der Generatoranordnungen des ASG und des DASG wird der Blindleistungsstellbereich analytisch bestimmt und durch Messungen validiert. Ein Vergleich zu den in Deutschland geltenden Netzanschlussbedingungen erlaubt eine Bewertung bezüglich der Fähigkeit, zur Netzstabilität beitragen zu können.

Abstract

At 49%, wind power plants account for the largest share of renewable energy within the German electricity mix. Because of the economic viability, wind power plants with the doubly fed induction generator (DFIG) are widely used besides the ones with externally excited synchronous generators. The lack of ability to drive through grid errors and support the grid stability at the same time leads to a decline of new plants with doubly fed induction generators. A new generator topology of the DFIG is proposed with the boost-up direct matrix converter (BDMC). This new generator topology allows the fully controllable operation of the generator and the support of the grid by injecting reactive power even at deep voltage dips.

First, the control of the BDMC as fully rated converter feeding a induction generator is developed. While emphasis is placed on the fact that the established field-oriented control of electrical machines can be used as unchanged as possible, the control structure for the HDMU is presented, which allows the free adjustment of the mains reactive current within the limits of the HDMU. In addition, the active damping of the line filter ensures that passive damping measures and the associated disadvantages are no longer present. The control of the new generator arrangement with the DASG is based on this structure, whereby the connection of the stator terminals to the capacitors of the line filter entails deviating and additional control measures.

After experimental verification of the functionality of the generator arrangements of the ASG and DASG, the reactive power control range is determined analytically and validated by measurements. A comparison to the grid connection conditions applicable in Germany allows an evaluation regarding the ability to contribute to grid stability.

Inhaltsverzeichnis

1	 1 Einordnung der Arbeit 1.1 Zielstellung der Arbeit			1 3 4 7
	1.5	Gliede	rung der Arbeit	9 10
2	Gru	ndlage	n und Modellbildung	13
	2.1	Untert	eilung in Teilsysteme	13
	2.2	Raum	zeigertransformation der elektrischen Größen	15
	2.3	Schalt	zustände des direkten Matrixumrichters	17
	2.4	AC-Ch	opper als Hochsetzsteller	26
		2.4.1	Schaltzustände des AC-Choppers	27
		2.4.2	Dynamisches Modell des Netzfilters mit dem AC-Chopper	29
		2.4.3	Stationäres Modell	32
	2.5	Model	lgleichungen Generatoren	34
	2.6	Netzai	nschlussbedingungen für Stromerzeugungsanlagen	36
		2.6.1	Spannungshaltung im stationären Betrieb	36
		2.6.2	Dynamische Spannungshaltung	37
3	Мос	Julatio	nsverfahren des HDMU	39
	3.1	Tastve	rhältnisse des direkten Matrixumrichters	40
		3.1.1	Tastverhältnis des Wechselrichters	42
		3.1.2	Tastverhältnisse des Gleichrichters	45
		3.1.3	Zusammenführen der Tastverhältnisse von Wechselrichter	
			und Gleichrichter	46
		3.1.4	Berechnung des Eingangsverschiebungswinkels	49
	3.2	Modul	ationsgrad des ACC	50
	3.3	Synch	rone Schaltsequenzen des DMU und des ACC	50
	3.4	Ausga	ngsspannungsstellbereich des DMU und HDMU	53
4	Reg	elung	des ASG mit dem HDMU als Vollumrichter	57
	4.1	Messg	rößen, Modellgrößen und Stellgrößen	58
	4.2	Regelu	Ingsstruktur und Betriebsmodus	60
	4.3	Regelu	ing des Käfigläufer-Asynchrongenerators	62
		4.3.1	Statorstromregelung	62

5	4.4 4.5 Reg 5.1	Netzse 4.4.1 4.4.2 4.4.3 Anti-W 4.5.1 4.5.2	Statorstromsonwertes	65 67 69 73 76 83 85 88		
5	4.4 4.5 Reg 5.1	A.4.1 4.4.2 4.4.3 Anti-W 4.5.1 4.5.2	Regelung des HDMU Regelung des HDMU Regelung des d-Zweiges durch den AC-Chopper Regelung des q-Zweiges durch den Matrixumrichter Aktive Dämpfung des Netzfilters im d-Zweig Aktive Dämpfung des Netzfilters im d-Zweig Vindup und Tracking der PI-Regler Nachführen von inaktiven Reglern Anti-Windup in kaskadierten Regelkreisen Anti-Windup	67 69 73 76 83 85 88		
5	4.5 Reg 5.1	4.4.1 4.4.2 4.4.3 Anti-W 4.5.1 4.5.2	Regelung des d-Zweiges durch den AC-Chopper Regelung des q-Zweiges durch den Matrixumrichter Aktive Dämpfung des Netzfilters im d-Zweig Vindup und Tracking der PI-Regler	69 73 76 83 85 88		
5	4.5 Reg 5.1	4.4.2 4.4.3 Anti-W 4.5.1 4.5.2	Aktive Dämpfung des Netzfilters im d-Zweig Vindup und Tracking der PI-Regler Nachführen von inaktiven Reglern Anti-Windup in kaskadierten Regelkreisen des DASG mit dem HDMU	73 76 83 85 88		
5	4.5 Reg 5.1	4.4.3 Anti-W 4.5.1 4.5.2 elung	Aktive Damprung des Netzhiters im d-Zweig	76 83 85 88		
5	4.5 Reg 5.1	4.5.1 4.5.2 elung	Mindup und Tracking der PI-Regier Nachführen von inaktiven Regiern Anti-Windup in kaskadierten Regelkreisen des DASG mit dem HDMU	83 85 88		
5	Reg 5.1	4.5.1 4.5.2	Anti-Windup in kaskadierten Regelkreisen	85 88		
5	Reg 5.1	4.5.2 elung	des DASG mit dem HDMU	88		
5	Reg 5.1	elung	des DASG mit dem HDMU			
	5.1	Macco		91		
	E O	wiessg	rößen, Modellgrößen und Stellgrößen	92		
	5.2	Regels	truktur und Betriebsmodus	94		
	5.3	Regelı	ing des doppelt gespeisten Asynchrongenerators	96		
		5.3.1	Rotorstromregelung	96		
		5.3.2	Statorstromregelung	99		
		5.3.3	Berechnung der Statorstromsollwerte	100		
	5.4	Netzse	eitige Regelung	102		
		5.4.1	Regelung des q-Zweiges durch den Matrixumrichter	102		
		5.4.2	Aktive Dämpfung des Netzfilters im d-Zweig	107		
	5.5	Wechselwirkung zwischen Statorflussverkettung und Rotormo-				
		menta	nleistung	109		
		5.5.1	Analyse der Rotormomentanleistung	109		
		5.5.2	Dampfung der Statorflussverkettung im synchronen Ko-	11-		
			ordinatensystem	115		
6	Ver	suchss	stand der untersuchten Generatoranordnungen	119		
	6.1	Messb	etrieb des ASG mit dem HDMU als Vollumrichter	121		
	6.2	Messb	etrieb des DASG mit dem HDMU	121		
	6.3	Eigens	schaften der Generatoren	122		
	6.4	Der H	DMU-Prototyp	124		
		6.4.1	Aufbau des Leistungsteils	125		
		<	Aufbau und Funktion der Signalverarbeitung	100		
		6.4.2	raibau and runktion der bignarverarbeitung	128		
7	Exp	6.4.2 erimer	Itelle Ergebnisse	128 131		
7	Exp 7.1	6.4.2 erimer Messu	ntelle Ergebnisse ngen am HDMU als Vollumrichter	128 131 131		
7	Exp 7.1	6.4.2 erimer Messu 7.1.1	ntelle Ergebnisse ngen am HDMU als Vollumrichter	128 131 131 132		
7	Exp 7.1	6.4.2 erimer Messu 7.1.1 7.1.2	ntelle Ergebnisse ngen am HDMU als Vollumrichter Stationärer Betrieb Transiente Übergänge	128 131 131 132 134		

Lit	terat	urverze	eichnis	203
в	The	sen		201
	A.2 A.3 A.4	Berech Ersatz Gleich	nnung der Oberschwingungs-Gesamtverzerrung	195 196 197
		A.1.2 A.1.3	Annäherung des Totzeitgliedes	188 189
Α	Anh A.1	ang Annah	men und Näherungen der Reglersynthese	187 188 188
9	Zus	ammei	nfassung und Ausblick	183
		8.2.4	Vergleich mit Anforderungen der dynamischen Spannungs- haltung	179
		8.2.3	Vergleich mit Anforderungen der stationären Spannungs- haltung	177
		8.2.2	Netzblindstromstellbereich unter Einfluss des ACC	175
		8.2.1	Stellgrenzen des DASG-Statorblindstromes	171
	8.2	Netzbl	haltung	169 171
		8.1.5	haltung	164
		8.1.3 8.1.4	Vergleich mit Anforderungen der stationären Spannungs-	159
		8.1.2	Eingangsblindstromstellbereich von DMU und HDMU	155
		8.1.1	Messverfahren und Ergebnisse der Netzblindstromgrenzer	ı152
	8.1	Netzbl	lindleistungsverhalten des ASG mit dem HDMU	152
8	Net	zblindl	eistungsverhalten der Generatoranordnungen	151
		7.2.3	Netzspannungseinbruch	146
		7.2.1 7.2.2	Transiente Übergänge	140
	7.2	Messu	ngen mit der neuen Generatoranordnung	140