Verfahren für die taktische Planung der Supply Chain

Dissertation zur Erlangung des akademischen Grades eines Doktors der Wirtschafts- und Sozialwissenschaften (Dr. rer. pol.) des Departments Wirtschaftswissenschaften der Universität Hamburg

> vorgelegt von Dipl.-Kfm. Sebastian Friedrich aus Hamburg

> > Hamburg Juli 2006

Mitglieder der Promotionskommission:

Vorsitzender: Prof. Dr. Hartmut Stadtler

Erstgutachter: Prof. Dr. Dr. h.c. Dieter B. Preßmar

Zweitgutachter: Prof. Dr. Stefan Voß

Das wissenschaftliche Gespräch fand am 29. November 2006 in Hamburg statt.

Schriften zur quantitativen Betriebswirtschaftslehre und Wirtschaftsinformatik

herausgegeben von Prof. Dr. Stefan Voß

Sebastian Friedrich

Verfahren für die taktische Planung der Supply Chain

Shaker Verlag Aachen 2007

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Hamburg, Univ., Diss., 2006

Copyright Shaker Verlag 2007 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-5820-7 ISSN 1616-1920

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Geleitwort

Die Globalisierung der unternehmerischen Tätigkeit stellt den Führungskräften neue Herausforderungen, die mit der Gestaltung der internationalen Supply Chain eng verbunden sind und damit neue und vor allem komplexe Entscheidungssituationen ergeben. Auf der Grundlage eines Verbunds in der Güterproduktion und der Distribution können sich viele Unternehmen auf ihre Kernkompetenzen konzentrieren und dabei ein höheres Effizienzniveau verwirklichen. Zugleich werden Vorteile im Hinblick auf vielfältige Marktzugänge zum Beschaffungsund Absatzbereich genutzt. Der hohe Verflechtungsgrad der Güterströme erfordert einen beträchtlichen Abstimmungsbedarf für alle Prozesse innerhalb der logistischen Kette. Eine Unterstützung bei dieser Koordinationsaufgabe bieten moderne Softwaresysteme an. Deren Leistungsfähigkeit hängt jedoch in entscheidendem Maße von der Qualität der verwendeten Planungsansätze ab.

Der Verfasser entwickelt in seinem Buch eine neue computergestützte Technologie für die Planung der logistischen Kette. Er eröffnet eine neue Sichtweise auf die Konstruktion von Planungsverfahren und deren Verfahrenskomponenten. Die theoretische Grundlage dieser neuartigen Planungsansätze beruht auf dem Prinzip der Evolutionären Algorithmen, wobei die hohe Planungsqualität mithilfe des Threshold Accepting erreicht wird.

In seiner wissenschaftlichen Analyse dieser neuen Planungsansätze kann der Verfasser mit Hilfe umfangreicher Testrechnungen zeigen, dass die praktische Anwendbarkeit und das Leistungsvermögen seines Verfahrensvorschlags die bekannten Lösungsansätze in allen Belangen der Praxis übertreffen. Aus den experimentellen Untersuchungen ergibt sich auch die Erkenntnis, dass die Implementierung des Planungskonzepts durch ein Softwaresystem, das aus Funktionskomponenten aufgebaut ist, entscheidende Vorteile bietet. Die problemspezifische Anpassung der einzelnen Komponenten auf das gegebene Planungsproblem ermöglicht eine effiziente Bewältigung der in der industriellen Praxis vorherrschenden Gestaltungsund Koordinationsaufgaben.

Die vorliegende Arbeit ist damit insbesondere für den Praktiker der computergestützten Logistikplanung von herausragender Bedeutung. Der wissenschaftlich interessierte Leser wird weiterführende Anregungen für die Konstruktion und Implementierung von metaheuristischen Planungsmethoden erhalten. Ich wünsche dem Buche von Sebastian Friedrich eine weite Verbreitung und einen engagierten Leserkreis.

Prof. Dr. Dr. h.c. D. B. Preßmar

Vorwort

Diese Arbeit entstand während meiner Zeit als wissenschaftlicher Mitarbeiter am Institut für Wirtschaftsinformatik der Universität Hamburg. Anregungen für die Ausrichtung und Ausgestaltung meiner wissenschaftlichen Arbeit kamen aus zahlreichen Praxisprojekten. Die mittelfristige Planung der Supply Chain als zentraler Untersuchungsgegenstand dieses Buches ist im Laufe dieser Projekte in den Fokus meiner Forschung gerückt.

Der erste Teil des Buches, die Kapitel 1 bis 3, setzt sich mit den betriebswirtschaftlichen Aspekten des Planungsproblems auseinander. Methodische Aspekte sind Schwerpunkt der Kapitel 4 bis 7. Das Buch richtet sich an Leser mit rein betriebswirtschaftlichem Interesse und solche mit Schwerpunkten im Bereich quantitativer Methoden gleichermaßen.

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die zum Gelingen dieser Arbeit beigetragen haben. Ein ganz besonderer Dank gebührt meinem akademischen Lehrer Herrn Prof. Dr. Dr. h.c. Dieter B. Preßmar für seine fortwährende Unterstützung durch zahlreiche Anregungen und Diskussionen. In gleicher Weise möchte ich Herrn Prof. Dr. Stefan Voß herzlich danken für die Übernahme des Korreferates und für das große Interesse, das er meiner Arbeit entgegengebracht hat. Seine vielfältigen Denkanstöße waren von großem Nutzen und haben die vorliegende Arbeit in hohem Maß beeinflusst. Danken möchte ich weiterhin Herrn Prof. Dr. Hartmut Stadtler für den Vorsitz des Prüfungsausschusses.

Großen Dank schulde ich auch meinem Kollegen Herrn Dr. Frank Schwartz sowie meinem Vater Herrn Heinrich Friedrich, die durch zahlreiche Anregungen und wertvolle Hinweise einen großen Beitrag zur Vollendung meines Manuskriptes geleistet haben. Darüber hinaus danke ich allen Mitarbeitern des Instituts für Wirtschaftsinformatik und allen ehemaligen Kollegen für die gute Zusammenarbeit, die vielen fruchtbaren Diskussionen und die kleinen aber doch zum Teil sehr wertvollen Anregungen.

Ganz herzlichen danken möchte ich vor allem meiner Frau Anette Friedrich, die mir während der gesamten Zeit meiner Promotion Rückhalt gegeben hat, und schließlich auch meinen Eltern und meiner Familie, die die Entstehung dieser Arbeit stets mit Interesse verfolgt haben.

Sebastian Friedrich

Inhaltsverzeichnis

At	bildı	ungsve	zeichnisX	VII
Ta	belle	nverze	chnis	ΚΧΙ
Ał	kürz	zungsve	rzeichnisXX	Ш
Sy	mbol	lverzeio	hnisX	ΧV
1	Ein	leitung		1
-		-	stand und Ziele der Arbeit	
			ı der Arbeit	
2	Tal	ktischo	Planung der Supply Chain	7
_			Chain Management	
	2.1	2.1.1	Definitionen und Begriffsabgrenzung	
		2	2.1.1.1 Definition der Supply Chain	
			2.1.1.2 Definition des Supply Chain Management	
		2.1.2	Bestandteile des Supply Chain Management	
		2.1.3	Herausforderungen und Potenziale im Hinblick auf den	
			Unternehmenserfolg	
	2.2	Hierai	chische Ansätze für die Supply-Chain-Planung	
		2.2.1	Grundlagen der hierarchischen Planung	. 20
		2.2.2	Ausgewählte hierarchische Planungsansätze	. 24
		2.2.3	Die Supply-Chain-Planungs-Matrix	. 26
	2.3	Das ta	ctische Supply-Chain-Planungsproblem (TSCP)	. 31
		2.3.1	Betriebswirtschaftliche Entscheidungssituation	. 32
		2.3.2	Zielgrößen für die taktische Planung	. 38
		2.3.3	Aspekte der problemgerechten Datenaufbereitung	. 42
			2.3.3.1 Bewältigung der Problemkomplexität durch Aggregation	. 43
			2.3.3.1.1 Aggregation von Zeiträumen	. 44
			2.3.3.1.2 Aggregation von Ressourcen, Lieferanten und Kunden.	. 46
			2.3.3.1.3 Aggregation von Produkten	. 47
			2.3.3.2 Bewertung unsicherer Daten	. 49
			2.3.3.2.1 Ursachen der Unsicherheit	. 49

				2.3.3.2.2	Ansätze zur Bewertung unsicherer Daten	50
			2.3.3.3	Bewertung	g der Entscheidungsalternativen	53
3	Tyj	pologie	der Sup	ply Chains		55
	3.1	Grund	llegende l	Merkmale v	on Supply Chains	55
		3.1.1	Funktio	nale Merkn	nale	56
			3.1.1.1	Absatzbez	ogene Merkmale	57
			3.1.1.2	Produktion	nsbezogene Merkmale	57
			3.1.1.3	Beschaffu	ngsbezogene Merkmale	58
			3.1.1.4	Distributio	onsbezogene Merkmale	58
		3.1.2	Struktur	elle Merkn	nale	58
			3.1.2.1	Topografi	sche Merkmale	59
			3.1.2.2	Organisato	orische Merkmale	59
	3.2	Suppl	y-Chain-T	Гуреп		64
		3.2.1	Chemie	- und Pharr	naindustrie	66
		3.2.2	Automo	bilindustrie	2	67
		3.2.3	Konsun	ngüterindus	trie	71
		3.2.4	Elektron	nikindustrie	·	73
4	Ma	thema	tische Mo	odellierung	g des taktischen Supply-Chain-Planungsproblems .	79
	4.1	Überb	lick über	existierend	e Modellierungsansätze	79
		4.1.1	Grundla	gen der Mo	odellierung	79
		4.1.2	Struktur	elle Verwa	ndtschaft zu Problemen einzelner Teilbereiche der	
			4.1.2.1		schaft zu Problemen der Losgrößenplanung	
					Merkmale von Problemen der Losgrößenplanung	
					Problemklassen der Losgrößenplanung	83
					Abgrenzung des TSCP von der mehrstufigen kapazitierten Losgrößenplanung	88
			4.1.2.2	Verwandt	schaft zu Problemen der Transportplanung	89
		4.1.3	Teilbere	eichsübergr	eifende Modellierungsansätze	90
			4.1.3.1	Abstimmu	ng von Lieferant und Käufer	93
				4.1.3.1.1	Deterministische Modellierungsansätze	94
				4.1.3.1.2	Stochastische Modellierungsansätze	94

		4.1.3.2	Simultane	Lager- und Distributionsplanung	95
			4.1.3.2.1	Deterministische Modellierungsansätze	95
			4.1.3.2.2	Stochastische Modellierungsansätze	95
		4.1.3.3	Umfassen	de Supply-Chain-Planung	96
			4.1.3.3.1	Deterministische Modellierungsansätze	96
			4.1.3.3.2	Stochastische Modellierungsansätze	100
4.2	Gemis	cht-ganz	zahlige Mo	dellformulierung	101
	4.2.1	Entsche	idungsvaria	iblen und Daten	103
	4.2.2	Randbe	dingungen.		107
		4.2.2.1	Produktion	1	107
			4.2.2.1.1	Kapazitätsrestriktionen	107
			4.2.2.1.2	Erfüllung von Mindestproduktionsmengen	114
			4.2.2.1.3	Transformationsrestriktionen	115
		4.2.2.2		ng von Rohstoffen und Zukauf von	
				produkten	
				ing	
			•		
			_		
				iss	
				gkeit	
	4.2.3		J		
	4.2.4				
4.3	Erweit				
	4.3.1			erundeten Vorgangsdauern	
	4.3.2			1	
	4.3.3			tionsverfahren	
	4.3.4			ng der Kapazitätsnutzung	
	4.3.5	Betrach	tung diverg	enter Materialflüsse	131
	4.3.6	Rabatte	, Mindestbe	stellmengen und Kontingente	133
	4.3.7	Umladu	ngen		135
	4.3.8	Überpro	portionale	Fehlmengenkosten	135
	4.3.9	Aspekte	des interna	ationalen Handels	136
4.4	Komp	lexität de	s Modellier	rungsansatzes	137

	4.4.1	Grundla	igen der Ko	omplexitätstheorie	138
		4.4.1.1	Komplex	tät von Entscheidungsproblemen	138
		4.4.1.2	Anwendu	ng der Komplexitätstheorie auf Optimierungsprobleme	141
	4.4.2	Komple	xität des T	SCP	143
		4.4.2.1	Beweis de	er NP-Äquivalenz	. 143
		4.4.2.2	NP-Volls	tändigkeit des Zulässigkeitsproblems	146
		4.4.2.3	Komplex	tät von Spezialfällen	147
	4.4.3	Schluss	folgerunge	n aus den Komplexitätsüberlegungen	148
5	Methoden	und Vei	rfahren fü	r die Planung der Supply Chain	. 151
				der Planungsverfahren	
	5.1.1	Klassifi	kation und	Systematisierung	. 151
	5.1.2	Lineare	und gemis	cht-binäre lineare Programmierung	. 153
		5.1.2.1	Problems	truktur	. 154
		5.1.2.2	Verfahrer	1	155
			5.1.2.2.1	Verfahren für lineare Probleme	155
			5.1.2.2.2	Verfahren für gemischt-binäre lineare Probleme	156
		5.1.2.3	Vor- und	Nachteile von mathematischen Verfahren	160
	5.1.3	Lokale	Suchverfah	iren	160
		5.1.3.1	Verfahrer	sidee	160
		5.1.3.2	Kompone	nten von lokalen Suchverfahren	163
			5.1.3.2.1	Lösungsrepräsentation und Lösungsraum	163
			5.1.3.2.2	Bewertungsfunktion	165
			5.1.3.2.3	Gestaltung der Nachbarschaft	165
			5.1.3.2.4	Auswahl und Ausgestaltung der Suchstrategie	166
		5.1.3.3	Meta-heu	ristische Suchstrategien	167
			5.1.3.3.1	Evolutionäre Algorithmen	170
				5.1.3.3.1.1 Genetische Algorithmen	. 177
				5.1.3.3.1.2 Evolutionsstrategien und Evolutionäre Programmierung	. 179
			5.1.3.3.2	Lösungsverfahren mit der Populationsgröße 1	
				5.1.3.3.2.1 Simulated Annealing	
				5.1.3.3.2.2 Threshold Accepting	

			5.1.3.3.2.3 Tabu Search	184
		5.1.3.4	Hybridverfahren	185
		5.1.3.5	Vor- und Nachteile lokaler Suchverfahren	186
	5.1.4	Weitere	Verfahren	187
		5.1.4.1	Relaxationsbasierte Verfahren	187
		5.1.4.2	Unvollständig ausgeführte exakte Verfahren	190
		5.1.4.3	Regelbasierte Verfahren	190
	5.2 Planu	ngsansätz	re	190
	5.2.1	Ansätze	e für die übergreifende taktische Planung der Supply Chain	191
		5.2.1.1	Verfahren auf Basis der mathematischen Optimierung	191
		5.2.1.2	Relaxationsbasierte Verfahren	191
		5.2.1.3	Spezielle Heuristiken	193
	5.2.2	Ansätze	e für strukturell verwandte Teilprobleme	194
		5.2.2.1	Verfahren für Losgrößenprobleme	194
			5.2.2.1.1 Ansätze der gemischt-ganzzahligen Optimierung	195
			5.2.2.1.2 Lokale Suchverfahren	196
			5.2.2.1.3 Verfahren auf Basis der Lagrange-Relaxation	200
			5.2.2.1.4 Spezielle Heuristiken	201
		5.2.2.2	Verfahren für die Losgrößen- und Ablaufplanung	205
6	Planungsa	ansätze f	ür das TSCP auf Basis des Threshold Accepting	207
	6.1 Anfor	derungen	an den Verfahrensaufbau	207
	6.1.1		nisse aus der Betrachtung von Verfahren für andere	
			nstellungen	
	6.1.2		erungen an ein lokales Suchverfahren für das TSCP	
		6.1.2.1	Auswahl der Suchstrategie	210
		6.1.2.2	Lösungsrepräsentation, Bewertungsfunktion und Nachbarschaft	212
			zur Steigerung der Leistungsfähigkeit von Verfahren für das	215
	6.2.1	Bewerti	ung unzulässiger Lösungen	215
		6.2.1.1	Möglichkeiten der Bewertung von Unzulässigkeit	216
		6.2.1.2	Ansatz zur automatischen Strafkostenanpassung	218
	622	Direkte	Finhindung des Thresholds in die Rewertungsfunktion	222

		6.2.3	Automatische Anpassung der Auswahlwahrscheinlichkeiten für Transformationsoperatoren	. 223
		6.2.4	Destabilisierung	. 225
		6.2.5	Automatische Threshold-Steuerung	. 226
	6.3	Binärv	ariablenbasiertes Threshold-Accepting-Verfahren (BBTA-Verfahren)	. 228
		6.3.1	Aufbau des TA-Lösungsvektors	. 229
		6.3.2	Definition der Nachbarschaft	. 229
		6.3.3	Bewertungsfunktion	. 231
		6.3.4	Bestimmung von Ausgangslösungen	. 233
		6.3.5	Verfahrensablauf	. 234
	6.4	Erweit	erung des BBTA-Verfahrens (EBTA-Verfahren)	. 235
		6.4.1	Anforderungen an den Aufbau einer Nachbarschaft	. 235
		6.4.2	Erweiterungen gegenüber dem BBTA-Verfahren	. 236
	6.5	Router	nbasiertes Threshold-Accepting-Verfahren (RBTA-Verfahren)	. 238
		6.5.1	Ermittlung von Routen durch die Supply Chain	. 238
		6.5.2	Aufbau des TA-Lösungsvektors	. 241
		6.5.3	Definition der Nachbarschaft	. 242
		6.5.4	Bewertungsfunktion	. 244
		6.5.5	Bestimmung der Ausgangslösung	. 248
		6.5.6	Mehrere unabhängige Thresholds	. 248
		6.5.7	Verfahrensablauf	. 249
		6.5.8	Alternativen in der Ausgestaltung des RBTA-Verfahrens	. 250
		6.5.9	Allgemeine Bewertung des Verfahrens	. 250
7	An	wendur	ng und Bewertung der Planungsansätze	. 253
			u und Erstellung von Probleminstanzen	
		7.1.1	Kriterien für die Unterscheidung von Szenarien	. 255
		7.1.2	Erstellung von Testszenarien mit Hilfe eines Szenario-Generators	
		7.1.3	Darstellung der Klassen von Testinstanzen	. 259
	7.2	Bewer	tung der Verfahrenskomponenten	
		7.2.1	Bewertung der Komponenten des BBTA-Verfahrens und des EBTA-Verfahrens	
			7.2.1.1 Vergleich des BBTA-Verfahrens mit dem EBTA-Verfahren	
			-p	

Lit	terati	ırverze	eichnis		. 299
8	Sch	lussbet	trachtun	g	. 295
	7.4	Zusam	menfasse	ende Bewertung der Verfahren	. 291
		7.3.9	Anzahl	der Perioden	. 290
		7.3.8	Anzahl	der Endproduktgruppen	. 288
		7.3.7	Anzahl	separat betrachteter Kapazitätsstufen	. 286
		7.3.6	Anzahl	der betrachteten Werksressourcen	. 285
		7.3.5	Anzahl	der Werke zur Herstellung einer Produktgruppe	. 283
		7.3.4	Supply-	Chain-übergreifende Produktionsstruktur	. 281
		7.3.3	Auslastu	ung der Werkskapazität	. 279
		7.3.2	Rüstkos	ten	. 278
		7.3.1	Kapazit	ätsverzehr durch Rüstvorgänge	. 276
	7.3	Bewer	tung der	Planungsverfahren anhand der verschiedenen Problemklassen	. 274
			7.2.2.4	Bestimmung von Ausgangslösungen	. 273
			7.2.2.3	Unabhängigkeit der Thresholds für Lösungsvektor- und Varianten-Transformationen	. 273
				Höhe der Ziel-Akzeptanzrate	. 272
				Begrenzung der Anzahl maximal aktiver Varianten	
		7.2.2	Bewertu	ing der Komponenten des RBTA-Verfahrens	. 271
			7.2.1.6	Bestimmung von Ausgangslösungen	. 270
			7.2.1.5	Automatische Threshold-Steuerung über die Ziel-Akzeptanzrate	. 269
			7.2.1.4	Einbindung des Thresholds in das lineare Unterproblem	. 268
			7.2.1.3	Bewertung unzulässiger Lösungen bei automatischer Strafkostenanpassung	. 266
			7.2.1.2	Automatische Anpassung der Gewichtung von Transformationsoperatoren	. 265

Abbildungsverzeichnis

Abbildung 1-1:	Bezugsquellen für Roh- und Zwischenprodukte in der deutschen Fertigung	2
Abbildung 1-2:	Aufbau der Arbeit	5
Abbildung 2-1:	Supply-Chain-Modell	10
Abbildung 2-2:	Bestandteile des SCM	13
Abbildung 2-3:	House of SCM	14
Abbildung 2-4:	Herausforderungen des SCM	15
Abbildung 2-5:	Planungshierarchie-Typen	21
Abbildung 2-6:	Supply-Chain-Planungs-Matrix	26
Abbildung 2-7:	Ebenen der Supply-Chain-Planung	31
Abbildung 2-8:	Aggregation von Stücklisten	34
Abbildung 2-9:	Zielsystem der taktischen Supply-Chain-Planung	43
Abbildung 2-10:	Dimensionen der Aggregation von Entscheidungen	44
Abbildung 2-11:	Wartezeiten durch Vorgaben der taktischen Planung	45
Abbildung 2-12:	Ablaufplan ohne Wartezeiten	45
Abbildung 2-13:	Unzulässigkeit von Planvorgaben	46
Abbildung 2-14:	Konvexer Kostenverlauf	47
Abbildung 2-15:	Load-Dependent-Lead-Time	52
Abbildung 3-1:	Merkmale von Supply Chains	56
Abbildung 3-2:	Organisatorische Merkmale	61
Abbildung 3-3:	Supply-Chain-Grundtypen	65
Abbildung 3-4:	Auslandsstandorte der deutschen Automobilindustrie	70
Abbildung 4-1:	Strukturen der mehrstufigen Fertigung	85
Abbildung 4-2:	Problemklassen der Losgrößenplanung	88
Abbildung 4-3:	Übertragung von Verzugsmengen	120
Abbildung 4-4:	Rundung von Vorgangsdauern	126
Abbildung 4-5:	Alternative Produktionsverfahren	130
Abbildung 4-6:	Typen der Materialverwertung	132
Abbildung 4-7:	Komplexitätsklassen	141
Abbildung 5-1:	Klassen der Planungsverfahren	153
Abbildung 5-2:	Steenest-Descent-Algorithmus	161

Abbildung 5-3:	Suchpfad des Steepest Descent	162
Abbildung 5-4:	Varianten der Lösungscodierung	164
Abbildung 5-5:	Unterscheidung von Lösungsebenen	165
Abbildung 5-6:	Klassifikation der Suchstrategien	170
Abbildung 5-7:	Ablauf Evolutionärer Algorithmen	174
Abbildung 5-8:	Ein-Punkt-Crossover	177
Abbildung 5-9:	Simulated-Annealing-Algorithmus	182
Abbildung 5-10:	Threshold-Accepting-Algorithmus	184
Abbildung 5-11:	Tabu-Search-Algorithmus	185
Abbildung 6-1:	Nicht zusammenhängender Lösungsraum	216
Abbildung 6-2:	Lösungsverlauf bei iterativer Strafkostenanpassung	220
Abbildung 6-3:	TA-Lösungsvektor des BBTA-Verfahrens	229
Abbildung 6-4:	Transformationsfunktion des BBTA-Verfahrens	231
Abbildung 6-5:	Stark zerklüfteter Lösungsraum	236
Abbildung 6-6:	Alternative Routen durch die Supply Chain	239
Abbildung 6-7:	Repräsentation von Routenvarianten durch den TA-Lösungsvektor	242
Abbildung 6-8:	Bestimmung von Ausgangslösungen für das RBTA-Verfahren	248
Abbildung 7-1:	Leistungssteigerung der Optimierungssoftware CPLEX	254
Abbildung 7-2:	Lösungsverlauf für die Testszenarien bei Optimierung mit CPLEX	263
Abbildung 7-3:	Leistungsfähigkeit des BBTA-Verfahrens	264
Abbildung 7-4:	Leistungsfähigkeit des EBTA-Verfahrens	265
Abbildung 7-5:	Leistungsfähigkeit bei automatischer Gewichtung der Transformationsoperatoren	266
Abbildung 7-6:	Anteil verletzter Kapazitätsrestriktionen	267
Abbildung 7-7:	Lösungsverlauf bei großen Unterschieden in der Höhe der Strafkostenanpassungsfaktoren	268
Abbildung 7-8:	Leistungssteigerung durch Einbindung des Thresholds in das Subproblem	269
Abbildung 7-9:	Lösungsgüte des EBTA-Verfahrens in Abhängigkeit der Höhe der Ziel-Akzeptanzrate	270
Abbildung 7-10:	Lösungsgüte bei Verwendung eines relativen Thresholds	270
Abbildung 7-11:	Lösungsgüte des EBTA-Verfahrens in Abhängigkeit der Ausgangslösung	271
Abbildung 7-12:	Lösungsgüte in Abhängigkeit der maximalen Anzahl aktiver Varianten	272

Lösungsgüte des RBTA-Verfahrens in Abhängigkeit der Ziel- Akzentanzrate	273
•	
Lösungsgüte des RBTA-Verfahrens in Abhängigkeit der	
Schwierigkeitsgrad von Szenarien in Abhängigkeit des	
Ergebnisse des EBTA-Verfahrens in Abhängigkeit des Rüstkapazitätsbedarfs	
Ergebnisse des RBTA-Verfahrens in Abhängigkeit des Rüstkapazitätsbedarfs	277
Schwierigkeitsgrad von Szenarien in Abhängigkeit der Rüstkosten	278
Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Rüstkosten	279
Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Rüstkosten	279
Schwierigkeitsgrad von Szenarien in Abhängigkeit der Werksauslastung	280
Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Werksauslastung	280
Anzahl Iterationen des EBTA-Verfahrens in Abhängigkeit der Werksauslastung	281
Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Werksauslastung	281
Schwierigkeitsgrad von Szenarien in Abhängigkeit der Produktionsstruktur	
Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Produktionsstruktur	282
Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Produktionsstruktur	283
Schwierigkeitsgrad von Szenarien in Abhängigkeit der Anzahl alternativer Werke	283
Anzahl Iterationen des EBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke	284
Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke	284
Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke	
Schwierigkeitsgrad von Szenarien in Abhängigkeit der Anzahl unabhängiger Ressourcen	285
	Akzeptanzrate Vorteilhaftigkeit unabhängiger Thresholds Lösungsgüte des RBTA-Verfahrens in Abhängigkeit der Ausgangslösung Schwierigkeitsgrad von Szenarien in Abhängigkeit des Rüstkapazitätsbedarfs Ergebnisse des EBTA-Verfahrens in Abhängigkeit des Rüstkapazitätsbedarfs Ergebnisse des RBTA-Verfahrens in Abhängigkeit des Rüstkapazitätsbedarfs Schwierigkeitsgrad von Szenarien in Abhängigkeit der Rüstkosten Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Rüstkosten Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Rüstkosten Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Rüstkosten Schwierigkeitsgrad von Szenarien in Abhängigkeit der Werksauslastung Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Werksauslastung Anzahl Iterationen des EBTA-Verfahrens in Abhängigkeit der Werksauslastung Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Werksauslastung Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Produktionsstruktur Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Produktionsstruktur Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Produktionsstruktur Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Produktionsstruktur Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke Anzahl Iterationen des EBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl alternativer Werke

Abbildung 7-34:	Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Anzahl unabhängiger Ressourcen	. 286
Abbildung 7-35:	Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl unabhängiger Ressourcen	. 286
Abbildung 7-36:	Schwierigkeitsgrad von Szenarien in Abhängigkeit der Anzahl an Kapazitätsstufen	. 287
Abbildung 7-37:	Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Anzahl an Kapazitätsstufen	. 287
Abbildung 7-38:	Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl an Kapazitätsstufen	. 288
Abbildung 7-39:	Schwierigkeitsgrad von Szenarien in Abhängigkeit der Anzahl an Endproduktgruppen	. 289
Abbildung 7-40:	Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Anzahl an Endproduktgruppen	. 289
Abbildung 7-41:	Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Anzahl an Endproduktgruppen	. 290
Abbildung 7-42:	Schwierigkeitsgrad von Szenarien in Abhängigkeit der Periodenanzahl	. 290
Abbildung 7-43:	Ergebnisse des EBTA-Verfahrens in Abhängigkeit der Periodenanzahl	. 291
Abbildung 7-44:	Ergebnisse des RBTA-Verfahrens in Abhängigkeit der Periodenanzahl	. 291

Tabellenverzeichnis

Abkürzungsverzeichnis

Abb. Abbildung

BBTA binärvariablenbasiertes Threshold Accepting

bzw. beziehungsweise

ca. circa

CLSP Capacitated Lot-Sizing Problem
CSLP Continuous Setup Lot-Sizing Problem

d.h. das heißt

DIN Deutsche Industrie-Norm

DLSP Discrete Lot-Sizing and Scheduling Problem

EBTA Erweiterung des binärvariablenbasierten Threshold Accepting

et al. et alii (und andere)

evtl. eventuell exp Exponent

f und die folgende Seite ff und fortfolgende Seiten GA Genetischer Algorithmus

GB Gigabyte

GCLSP General Capacitated Lot-Sizing Problem

GE Geldeinheiten
GHz Gigahertz

GLSP Generalized Lot-Sizing and Scheduling Problem

Hrsg. Herausgeber i.d.R. in der Regel

IT Informationstechnologie

IuK Information und Kommunikation

LB Lower Bound

LP Lineare Programmierung sowie Lineares Programm (in Abhängigkeit des

Kontextes)

max Maximum
ME Mengeneinheit
MHz Megahertz
min Minimum

MIP Mixed Integer Programming (gemischt-ganzzahlige Programmierung)

MLCLSP Multi-Level Capacitated Lot-Sizing Problem

MLLP Multilevel Lot-Sizing Problem
mrp Material Requirements Planning
MRP II Manufacturing Ressource Planning

OR Operations Research o.V. Operations Research

PLSP Proportional Lot-Sizing and Scheduling Problem

RBTA routenbasiertes Threshold Accepting

rnd Random (Zufallsfunktion)

s Sekunden s. siehe S. Seite

SA Simulated Annealing
SCC Supply-Chain Council
SCM Supply Chain Management

SCOR-Modell Supply-Chain-Operations-Reference-Modell

SOS Special-Ordered-Set

Sp. Spalte

TA Threshold Accepting

TSCP taktisches Supply-Chain-Planungsproblem

TSCP-EP Entscheidungsproblemvariante des taktischen Supply-Chain-

Planungsproblems

TSCP-REP reduzierte Entscheidungsproblemvariante des taktischen Supply-Chain-

Planungsproblems

TSP Travelling Salesman Problem

UB Upper Bound

u.d.Nb. unter den Nebenbedingungen

vgl. vergleiche z.B. zum Beispiel z.T. zum Teil

Symbolverzeichnis

Die mehrfache Verwendung von Symbolen ist aufgrund der großen Zahl an betrachteten Modellen und Verfahren nicht vollständig zu vermeiden. Für alle mehrfach verwendeten Symbole wird daher zusätzlich zu deren Bedeutung der Kontext angegeben, für den die aufgeführte Bedeutung gültig ist. Der Übersichtlichkeit halber wird eine Unterteilung in Indizes, Parameter, Variablen, Mengen und sonstige Symbole vorgenommen.

Indizes

e	Endproduktgruppe.
i	Produktionsstandort (→klassisches Transportproblem).
i	Kostenrechnerisch oder technisch unterscheidbare Ressourceneinheit,
	$i \in I_o (\to TSCP)$.
i	Zeit konsumierender Transport- oder Produktionsvorgang innerhalb
	der Supply Chain (→Modell zur Berechnung von ganzzahligen Vor-
	gangsdauern).
i	Gegenstandsindex (→Knapsackproblem).
j	Bedarfsstandort.
k	Maschinenindex (→MLCLSP).
k	Bezeichner für unterscheidbare parallel nutzbare Transportkanten,
	$k \in K_{o,o'}(\to TSCP)$.
m	Produkt (\rightarrow MLCLSP).
m	Produktgruppe, Zwischenproduktgruppe, $m \in M (\to TSCP)$.
0	Ort bzw. Knoten, $o \in O$.
p	Produktionsprozess.
r	Ressourcentyp (z.B. Arbeitskraft, Maschine), $r \in R$.
t	Periode, $t \in T$.
v	Fehlmengenstufe, $v \in V$.

Parameter

i-ter positiver ganzzahliger Wert.
Matrix reeller Zahlen; Koeffizientenmatrix.
Absenkfaktor der Temperatur (→ Simulated Annealing).
Absenkfaktor des Thresholds (→Threshold Accepting).
Vektor reeller Zahlen.
Matrix reeller Zahlen; Koeffizientenmatrix.
Beschaffungskontingent der Produktgruppe m in Knoten o über den
gesamten Planungszeitraum (→Erweiterung des TSCP).
Maximale Bestellmenge in einer <i>t-o-m</i> -Kombination (\rightarrow TSCP).
Maximale Bestellmenge in Stufe i (\rightarrow Erweiterung des TSCP).

c

$B_{o,m}^{min}$	Mindestbestellmenge	von	Produktgruppe	m	in	Knoten	o	über	den
	gesamten Planungszeit	traun	$n (\rightarrow TSCP)$.						

 $B_{t,o,m}^{min}$ Mindestbestellmenge in einer t-o-m-Kombination (\rightarrow Erweiterung des

TSCP). Zielfunktionskoeffizientenvektor.

 C_i Produktionskapazität in Standort i.

Menge von Produkt m, die zur Produktion einer Einheit von Produkt

m' benötigt wird.

 C^{L}_{m} Koeffizient der Lagerinanspruchnahme durch Produktgruppe m (pro

ME).

 C^{P} Kapazitätsnutzung (→TSCP-REP).

Kapazitätsinanspruchnahme der Maschine k durch Produktion einer

Einheit von Produkt $m (\rightarrow MLCLSP)$.

 $C_{o,m,r}^{P}$ Koeffizient der Inanspruchnahme von Produktionskapazität in einer o-

m-r-Kombination (pro ME); (\rightarrow TSCP).

 $C^{P}_{t',\alpha m r}$ Kapazitätskoeffizient für die Produktion in einer o-m-r-Kombination.

der für jede Produktionsperiode t' relativ zum Produktionsbeginn den

Kapazitätsbedarf angibt (→Erweiterung des TSCP).

 $C^{Pin}_{m,m}$ Anteil an Vorprodukt m, der als Input zur Herstellung einer Einheit

von Produkt m' benötigt wird (\rightarrow TSCP).

 $C^{Pin}_{m,p}$ Inputanteil von Produkt m bei Produktionsprozess p (\rightarrow Erweiterung

des TSCP – Betrachtung divergenter Materialflüsse).

 $C^{Pout}_{m,p}$ Outputanteil von Produkt m bei Produktionsprozess p.

 $C^{Subst}_{m,m}$ Benötigte ME der Produktgruppe m', um eine ME der Produktgruppe

m zu substituieren.

 C^{Win}_{m} Koeffizient der Inanspruchnahme von Transportkapazität durch Pro-

duktgruppe m (pro ME).

d Vektor reeller Zahlen.

 D_i Bedarf in Ort i (\rightarrow klassisches Transportproblem). $D_{m,t}$ Bedarf an Produkt m in Periode $t (\rightarrow MLCLSP)$.

 D_t Nachfrage in Periode $t (\rightarrow TSCP-REP)$.

Nachfragemenge in einer t-o-m-Kombination (\rightarrow TSCP). $D_{t,o,m}$

 D^{urspr}_{i} Tatsächliche Dauer des Vorgangs i.

Ein kleiner Wert 3

 γ^{+} Strafkostenanpassungsfaktor für die Strafkostenerhöhung. $\gamma^{\bar{}}$ Strafkostenanpassungsfaktor für die Strafkostensenkung.

Н positiver ganzzahliger Wert.

 $I^{Pmax}_{t,o}$ Letzte Kapazitätsstufe der Ressourcen in Knoten o in Periode t. Kosten für den Transport einer Einheit von Ort i nach Ort j. $K_{i,i}$ $K^{B}_{o,m}$ Beschaffungskosten für Produktgruppe *m* in Knoten *o* (pro ME). $K^{B}_{-}^{SpFix}_{o,m}$

Sprungfixe Bestell- bzw. Beschaffungskosten für Produktgruppe m in

Knoten o (pro Bestellung).

 $K^{KapBSt}_{t,o,m}$ Strafkosten für die Verletzung der maximalen Beschaffungsmenge von Produktgruppe m an Knoten o in Periode t (pro ME). $K^{KapLSt}_{t,o}$ Strafkosten für die Verletzung der Kapazitätsrestriktion des Lagers an Knoten o in Periode t (pro Kapazitätseinheit). $K^{KapPSt}_{t,o,r}$ Strafkosten für die Verletzung der Kapazitätsrestriktion von Produktionsressource r in Periode t und Knoten o (pro Kapazitätseinheit). $K^{KapWSt}_{t,o,o',k}$ Strafkosten für die Verletzung der Kapazitätsrestriktion von Transportressource k für die Verbindung von Knoten o nach Knoten o' in Periode t (pro Kapazitätseinheit). K^{L}_{m} Lagerkosten für das Produkt m (pro Periode); (\rightarrow MLCLSP). $K^{L}_{o,m}$ Lagerkosten für Produktgruppe m in Knoten o (pro ME); (\rightarrow TSCP). K^{L} _SpFix Sprungfixe Lagerkosten in Knoten o (pro Lagerraumeinheit). K^{max} Maximale Gesamtkosten $K_{o,m}^{P}$ Produktionskosten für Produktgruppe m in Knoten o (pro ME); (→TSCP). Kosten pro Produktionsprozess-Basismengeneinheit (→Erweiterung des TSCP – Betrachtung divergenter Materialflüsse). Proportionale Kapazitätskosten einer Produktions-Ressourcen-Stufe in einer o-i-r-Kombination (pro Kapazitätseinheit). $K^{P_SpFix}_{o.i.r}$ Sprungfixe Produktionskosten in einer o-i-r-Kombination (pro Produktionskapazitätseinheit). K^{S}_{m} Rüstkosten für das Produkt m. $K^{Setup}_{o,m}$ Rüstkosten an Knoten o für Produktgruppe m, wenn in einer Periode eine Produktgruppe aufgelegt wird (pro Rüstvorgang); (→TSCP). K^{Setup} Rüstkosten für die Produktion in Periode $t \rightarrow TSCP-REP$. $K^{V}_{o,m}$ Backorder-Fall: Verspätungskosten (pro ME); Lost-Sales-Fall: Kosten für Nichterfüllung eines Auftrages für Produktgruppe m an Knoten o (pro ME); (\rightarrow TSCP). $K^{V}_{o,m,v}$ Fehlmengenkosten für eine o-m-Kombination in Fehlmengenstufe v (→Erweiterung des TSCP). $K^{W}_{o,o',k,m}$ Transportkosten in einer *o-o'-k-m-*Kombination (pro ME). $K^{W_SpFix}_{o,o',k}$ Sprungfixe Transportkosten in einer o-o'-k-Kombination (pro Transporteinheit). $L_{o,m}^{anf}$ Lageranfangsbestand der Produktgruppe m in Knoten o. L^{max}

Maximale Lagerkapazität in Knoten o.

Minimaler Lagerbestand am Ende einer Periode (knotenbezogener

Sicherheitsbestand).

 $L^{min\ Gesamt}_{m}$ Minimaler Lagerbestand der Produktgruppe m am Ende einer Periode

(Supply-Chain-weiter Sicherheitsbestand).

LR^{Strafkosten} Untergrenze für die Bewertung der Verletzung einer Restriktion um

eine Einheit.

 $LT_{o,m}^{P}$ Dauer eines Transformations- bzw. Produktionsprozesses zur Erstel-

lung der Produktgruppe m in Knoten o (Lead-Time) (in Perioden);

 $(\rightarrow TSCP)$.

 LT_p^P Lead-Time des Produktionsprozesses $p (\rightarrow Erweiterung des TSCP -$

Betrachtung divergenter Materialflüsse).

λ Anzahl an Nachkommen (→Evolutionsstrategien).

M Hinreichend großer Wert (\rightarrow MLCLSP).

 $M_{t,o,m}$ Eine hinreichend große Zahl für die entsprechende t-o-m-Kombination

 $(\rightarrow TSCP)$.

 $\mu \hspace{1cm} \text{Anzahl Elternindividuen } (\rightarrow \text{Evolutions strategien}).$

 p_n Auswahlwahrscheinlichkeit für den Transformationsoperator n. P^{max}_k Maximale Produktionskapazität der Maschine k (\rightarrow MLCLSP). P^{max}_t Die maximale Produktionskapazität in der Periode t (\rightarrow TSCP-REP). $P^{max}_{to.ir}$ Maximale Produktionskapazität in einer t-o-i-r-Kombination

 $(\rightarrow TSCP)$.

 $P_{a,m}^{min}$ Mindestproduktionsmenge für Produktgruppe m in Knoten o.

s Anzahl disjunkter Teilmengen.

S_m Kapazitätsverzehr durch einen Rüstvorgang für das Produkt m (Rüst-

zeit); (→MLCLSP).

S_{o,m,r} Kapazitätsbedarf durch einen Rüstvorgang in einer o-m-r-Kombina-

tion (\rightarrow TSCP).

S^{max} Größe des Rucksacks.

SV^{max}_{to,m,v} Maximale Verzugsmenge bzw. maximaler Umsatzverlust der Produkt-

gruppe *m* in Fehlmengenstufe *v* in einer *t-o*-Kombination.

 $\begin{array}{lll} T^0 & & & & \text{Starttemperatur } (\rightarrow \text{Simulated Annealing}). \\ T^0 & & & \text{Startthreshold } (\rightarrow \text{Threshold Accepting}). \\ T^{max} & & & \text{Letzte Periode (Planungshorizont); } (\rightarrow \text{TSCP}). \\ T^{max} & & & \text{Anzahl der Perioden des TSCP-REP} (\rightarrow \text{TSCP-REP}). \\ T^{W} & & & \text{Constant Acceptance Accept$

 $T_{o,o',k}^{W}$ Dauer des Transportes auf einer Kante k von o nach o'.

V^{min} Mindestnutzen.

W^{max}_{t,o,o',k} Maximale Kapazität einer Transportkante in einer t-o-o'-k-Kombina-

tion.

 Z^{Smax}_{o} Maximale Anzahl aktiver Rüstzustände in Werk o (pro Periode).

Variablen

d_i Auf ganze Perioden gerundete Vorgangsdauer.

f Bruchteil einer Periode, ab dem zum nächsten ganzzahligen Wert ab-

bzw. aufgerundet wird.

 $k_{t,o,i,r}^{PR}$ Kapazität einer Ressource r in Stufe i, die in Knoten o in t beansprucht

wird.

 $l_{m,t}$ Menge von Produkt m, die in Periode t gelagert wird (\rightarrow MLCLSP).

λ Vektor von Lagrange-Multiplikatoren.

 $p_{t,o,p}$ Basismenge in einem Produktionsprozess p in einer t-o-Kombination.

s_i	Größe von Gegenstand i.
$S^{KapB}_{t,o,m}$	Überbeschaffung der Produktionsgruppe m in Periode t an Knoten o
	(in ME).
$S^{KapL}_{t,o}$ $S^{KapP}_{t,o,r}$	Überauslastung des Lagers an Knoten o in Periode t .
$s^{KapP}_{t,o,r}$	Überauslastung der Produktionsressource r in Periode t an Knoten o
	(in Kapazitätseinheiten).
$S^{KapW}_{t,o,o',k}$	Überauslastung der Transportressource k von o noch o' in Periode t
1,2,2 ,	(in Kapazitätseinheiten).
$S^{V}_{t,o,m}$	Verzugsmenge bzw. Umsatzverlust der Produktgruppe <i>m</i> in einer <i>t-o-</i>
	Kombination (\rightarrow TSCP).
$S^{V}_{t,o,m,v}$	Verzugsmenge bzw. Umsatzverlust der Produktgruppe m in der Fehl-
.,.,,	mengenstufe v in einer t - o -Kombination (\rightarrow Erweiterung des TSCP).
v_i	Nutzen von Gegenstand i.
x	Vektor von Entscheidungsvariablen (→allgemeines Optimierungs-
	problem).
x	Vektor von positiven reellwertigen Variablen (→LP, gemischt-
	ganzzahliges Optimierungsproblem).
$x_{i,j}$	Transportmenge von Ort i nach Ort j (\rightarrow klassisches Transportpro-
-9	blem).
$x_{m,t}$	Menge von Produkt m , die in Periode t hergestellt wird (\rightarrow MLCLSP).
$x^{B}_{t,o,m}$	Menge einer beschafften Produktgruppe <i>m</i> in einer <i>t-o</i> -Kombination
,,,,,,,	$(\rightarrow TSCP)$.
$x^{B}_{t,o,m,i}$	Menge einer beschafften Produktgruppe <i>m</i> in einer <i>t-o</i> -Kombination in
	Stufe i (\rightarrow Erweiterung des TSCP).
x^{best}	Beste bisher gefundene Lösung.
x_{t}^{L}	Menge der Produktgruppe, die am Ende der Periode <i>t</i> eingelagert wird
•	$(\rightarrow TSCP\text{-REP}).$
$x^{L}_{t,o,m}$	Lagermenge einer Produktgruppe <i>m</i> in einer <i>t-o-</i> Kombination
	$(\rightarrow TSCP)$.
x_{t}^{P}	Menge der Produktgruppe, die in Periode t hergestellt wird (\rightarrow TSCP-
	REP).
$\chi^{P}_{t,o,m}$	Menge der Produktgruppe m, deren Produktion an Knoten o in Perio-
	de t begonnen hat $(\rightarrow TSCP)$.
$x^{Pin}_{t,o,m}$	Menge der Produktgruppe m , die in die Produktion in Knoten o in
	Periode <i>t</i> eingeht.
$x^{Subst}_{t,o,m,m}$	Menge der Produktgruppe m , die durch Produktgruppe m ' substituiert
	wird.
$x^{Win}_{t,o,o',k,m}$	Menge der Produktgruppe m, deren Transport von o nach o' über die
	Kante <i>k</i> in Periode <i>t</i> startet.
y	Vektor von Binärvariablen (→gemischt-binäres Optimierungsprob-
	lem).
$y_{m,t}$	1, wenn Produkt m in Periode t hergestellt wird; 0 sonst (\rightarrow MLCLSP).

D.	
$y^{B}_{t,o,m}$	1, wenn Produktgruppe m in Periode t in Knoten o beschafft wird, 0 sonst (\rightarrow TSCP).
$y^{B}_{t,o,m,i}$	1, wenn Produktgruppe m in Periode t in Knoten o in Stufe i beschafft
	wird, 0 sonst (→Erweiterung des TSCP).
$y^{L}_{t,o}$ $y^{M}_{t,o,m}$	1, wenn in Knoten o in Periode t gelagert wird, 0 sonst.
$y_{t,o,m}^{M}$	1, wenn Produktgruppe m in Periode t in Knoten o produziert wird, 0
	sonst.
y_t^P	Binärvariable, die die Produktion in einer Periode kontrolliert
	$(\rightarrow TSCP-REP)$.
$y^{P}_{t,o,i,r}$	1, wenn Kapazitätsblock i in Knoten o für Ressource r in Periode t den
	höchsten genutzten Kapazitätsblock darstellt, 0 sonst (→TSCP).
$y^{W}_{t,o,o',k}$ $z^{P}_{t,o,i,r}$	1, wenn Transportkante k in Periode t benutzt wird, 0 sonst.
$z^{P}_{t.o.i.r}$	Kontinuierliche Variable, die auf den Wert 1 gezwungen wird, wenn
	in einer t-o-r-Kombination ein Kapazitätsblock i genutzt wird, 0 sonst
	(natürlich ganzzahliger Kapazitätsblock-Indikator).
$z^{Setup}_{t,o,m}$	Kontinuierliche Variable, die den Wert 1 annimmt, wenn in einer <i>t-o</i> -
	Kombination auf Produktgruppe m gerüstet wird, 0 sonst (natürlich
	ganzzahliger Rüstindikator).
Mengen	
A	Menge positiver ganzzahliger Werte.
E	Menge aller Endprodukte.
I	Menge aller Vorgänge i innerhalb der Supply Chain (\rightarrow Modell zur
	Berechnung von ganzzahligen Vorgangsdauern).
I	Menge aller Produktionsstandorte i (→klassisches Transportproblem).
I_e	Menge aller Vorgänge innerhalb der Supply Chain, die zur Erstellung
C	einer Endproduktgruppe e notwendig sind (\rightarrow Modell zur Berechnung
	von ganzzahligen Vorgangsdauern).
I_o	Menge aller Kapazitätsstufen i in Knoten $o (\rightarrow TSCP)$.
$\overset{\circ}{J}$	Menge aller Bedarfsstandorte <i>j</i> .
K	Menge aller Maschinen $k \rightarrow MLCLSP$.
$K_{o,o}$,	Menge aller Transportkanten k von Knoten o nach Knoten o'
-,-	$(\rightarrow TSCP)$.
M	Menge der Produktgruppen m.
M^{B}_{o}	Menge der Produktgruppen, die in Knoten o beschafft werden können.
$M^{\!B}_{o} \ M^{\!DFehl}_{o}$	Menge aller Produktgruppen <i>m</i> , die an Knoten o nachgefragt werden,
	bei denen die Nachfrage im Verspätungsfall verloren ist.
$M^{D\ Verzug}_{o}$	Menge aller Produktgruppen m, die an Knoten o nachgefragt werden,
Ü	bei denen im Verspätungsfall nachgeliefert werden kann.
M_{o}^{L}	Menge der Produktgruppen, die in Knoten o gelagert werden.
M^{out}_{m}	Menge der (Output-)Produkte, in deren Produktion <i>m</i> als Input ein-
- m	geht.
	6

 M_{o}^{P} Menge der Produktgruppen, die an dem Produktionsort o hergestellt

werden.

 M_{o}^{Pin} Menge der Produktgruppen, die an dem Produktionsort o für die Pro-

duktion einer Produktgruppe als Input benötigt werden.

 M^{PMin}_{o} Menge der Produktgruppen, die an dem Produktionsort o hergestellt

werden und für die eine Mindestproduktionsmenge existiert.

 M^{Pout}_{m} Menge der (Output-)Produktgruppen, in deren Produktion m als Input

eingeht.

 M^{Prod} Menge der Produkte m.

Menge der Produktgruppen, für die ein Rüstzustand in eine Folgeperi-

ode übertragen werden kann.

 M^{Subst+}_{m} Menge aller Produktgruppen, durch die m substituiert werden kann. M^{Subst-}_{m} Menge aller Produktgruppen, die durch m substituiert werden können. M^{W}_{k} Menge der Produktgruppen, die auf der Transportkante k transportiert

werden können.

N Menge aller Transformationsoperatoren n.

NP Klasse aller Entscheidungsprobleme, die nicht sicher mit polynomia-

lem Aufwand gelöst werden können.

O Menge aller Knoten o.

O^L_m Menge der Knoten, an denen Produktgruppe m gelagert werden kann.

P Klasse aller Entscheidungsprobleme, die mit polynomialem Aufwand

gelöst werden können.

 P_{m}^{in} Menge aller Produktionsprozesse p, die Produktgruppe m als Input

benötigen.

 P_{m}^{out} Menge aller Produktionsprozesse p, die Produktgruppe m als Output

erzeugen.

R Menge aller Ressourcen r.

 R_{+}^{n} Menge *n*-dimensionaler Vektoren positiver reeller Zahlen.

S Lösungsraum eines lokalen Suchverfahrens.

S^{Kap_eingehalten} Menge aller Ressourcen, deren Kapazitätsgrenze seit der letzten Straf-

kostenanpassung nicht verletzt worden ist.

S^{Kap_verletzt} Menge aller Ressourcen, deren Kapazitätsgrenze seit der letzten Straf-

kostenanpassung verletzt worden ist.

T Menge aller Perioden t. U Menge aller Gegenstände i. V Menge aller Fehlmengenstufen v.

Sonstige Symbole

 $anzI_n$ Anzahl der Transformationen mit dem Operator n, die zu einer Ver-

besserung der Lösung geführt haben.

 $anzR^{M}_{t,o,m}$ Zähler für die Anzahl an Routen, durch die eine Variable $y^{M}_{t,o,m}$ ge-

setzt wird.

 $anzR^{P}_{t,o,i,r}$ Zähler für die Anzahl an Routen, durch die eine Variable $y^{P}_{t,o,i,r}$ ge-

setzt wird.

 $anzT_n$ Gesamtanzahl der Transformationen mit dem Operator n.

 Δe Energieanstieg.

f Kapazitätsauslastungsfunktion.

F(x) Verteilungsfunktion (\rightarrow wahrscheinlichkeitstheoretische Betrachtung).

F(x) Zielfunktion (\rightarrow allgemeines Optimierungsproblem, LP).

F(x) Bewertungsfunktion (\rightarrow lokale Suchverfahren).

F(x,y) Lineare Zielfunktion (\rightarrow gemischt-binäres Optimierungsproblem). F^{abs} Absolute Bewertung einer Lösung, die mit dem aktuell untersuchten

Verfahren ermittelt wurde.

F^{akt} Bewertung der aktuellen Lösung.

F^{BBTA} Bewertungsfunktion des BBTA-Verfahrens.

F^{MIP3600} Bester Zielfunktionswert, der mit Hilfe der mathematischen Optimie-

rung nach einer Stunde Rechenzeit (3600 Sekunden) für das betrachte-

te Szenario gefunden wurde.

F^{RBTA} Bewertungsfunktion des RBTA-Verfahrens.

 F^{rel} Relative Lösungsgüte. $g_i(x)$ *i*-te Funktion von x.

 $g_i(x,y)$ i-te lineare Funktion von x und y.

gap^{opt} Optimalitätslücke.k Boltzmann-Konstante.

lb Niedrigste untere Schranke bzw. bestenfalls noch erreichbarer Ziel-

funktionswert.

M Transformationsfunktion.

n Anzahl ausgewählter Elternindividuen (→Genetische Algorithmen).

nIterationszähler (\rightarrow sonstige Fälle).N(x)Nachbarschaft einer Lösung x.O(p(n))Ordnung des Polynoms p(n).

p Akzeptanzwahrscheinlichkeit (Simulated Annealing).

P Optimierungsproblem. p(n) Polynom von n.

PD Dekomponierbares Optimierungsproblem.
PR Relaxiertes Optimierungsproblem.

Π Entscheidungsproblem.

q_n Zustand einer Turingmaschine; "Eine Lösung wurde nicht gefunden".
 q_y Zustand einer Turingmaschine; "Eine Lösung wurde gefunden".

rnd[0,1] Zufallszahl zwischen 0 und 1.

Temperatur (\rightarrow Simulated Annealing).

Threshold bzw. Toleranzschwelle (→Threshold Accepting).