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Cooperativity and its Use in Robust Control and State Estimation for Uncertain Dynamic
Systems with Engineering Applications
— Abstract —

In control engineering, model-based designs are applied to a broad variety of applications.
Here, one aims to find a balance in the modeling approach depicting the reality as detailed
as necessary while keeping the complexity as low as possible in terms of realizability. For this,
simplifications are used, e.g. in the form of approximation of nonlinearities, parameter couplings
or order reduction. Additionally, errors may occur in parameter identification due to physically
motivated phenomena, measurement effects, or possible numerical discretization errors. As a
result, basically all real-life systems are subject to uncertainties.

In the presented work, those uncertainties are regarded as intervals, where worst-case bounds
are represented by the upper and lower limit of an uncertain parameter. Novel control designs
are introduced, which are based on a linear matrix inequality approach suitable for uncertain
systems. Two extensions to state-of-the-art designs were given; the first with a constant con-
troller gain approach over the complete time horizon and a second using a gain scheduling
design over temporal subslices. Here, both rely on iterative solutions in the terms that control-
ler gains are adapted based on the reachability analysis of former simulations. This means, that
an efficient application of such methods is only realized with a reliable computation of possible
interval enclosures. State-of-the-art enclosure techniques are often subject to overestimation, a
possible solution comes in form of so-called cooperative systems. The structure of these systems
allows for a separately, point-valued evaluation of the worst-case bounds, while guaranteeing
the real value to be insight said bounds. This property can be found in numerous systems,
however, exceptions occur especially concerning models from the fields of electrical as well as
mechanical applications. To widen the applicability of cooperativity into these fields, this work
presents transformation methods to adapt the structure of the treated system in such a way
that it becomes cooperative while keeping its original stability properties. Due to the nature of
said transformations this is done for systems with purely real eigenvalues and systems including
conjugate-complex ones. As a final theoretical contribution, a state estimation is added to the
controlled system as a form of fault diagnosis. Here, two possible approaches are presented.
The first aims at keeping the structure of the controlled (and transformed into a cooperative
form) system and, hence, is called cooperative-preserving observer. A second design is oriented
on the control design making use of the duality principle, meaning that the controlled system is
transformed and a parallel model, including the observer is also transformed into a cooperative
system. Both results are then compared for the fault diagnosis to detect actuator or/and sensor
faults.

Overall, this work gives a generally applicable method combining robust control designs with
the computation of verified interval enclosures, and estimators as fault diagnosis tools. Based on
the theoretical findings, suitable application scenarios are given in the second part of this work.
Here, a constant gain controller design is applied to an electrical circuit, which is then subject to
a transformation approach with purely real eigenvalues and a cooperativity-preserving observer
design. Next, two mechanical, oscillatory systems are used to show a transformation based on
complex-conjugate eigenvalues. Fault diagnosis models are further implemented in parallel. As
an extension, the theory is applied to a fractional-order system to show that it works equally
well for such models and highlight necessary adaptions. Finally, limits of the presented methods
are acknowledged and an alternative solution is demonstrated on the example of an inverted
pendulum.
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