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esIn this work, the propagation behavior of orbital angular momen-
tum (OAM) waves is numerically studied in scenarios commonly 
encountered in radio frequency (RF) communication links. In the 
RF domain, OAM waves comprise an orthogonal mode system, 
where the different OAM modes distinguish in their spacial phase 
pattern. To assist the design of OAM-based communication and 
sensing hardware, this work explores the fundamental behavior of 
radiated and guided OAM waves. This includes a general inves-
tigation of symmetry requirements the OAM mode system poses 
to an N-port and a more specific look at the impact of wave trans-
mission over transmission lines, in free space, over ground, and 
through apertures. Additionally, the shielding and interference of 
OAM waves are studied.
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05.04.2024



Shaker  Verlag
Düren  2024

Berichte aus der Elektrotechnik

Michael Wulff

Numerical Analysis of Orbital Angular Momentum
Waves Regarding Wave Propagation and

Communication



Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: Hamburg, Techn. Univ., Diss., 2024

Copyright  Shaker  Verlag  2024
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8440-9506-7
ISSN 0945-0718

Shaker  Verlag  GmbH  •  Am Langen Graben 15a  •  52353  Düren
Phone:  0049/2421/99011-0   •   Telefax:  0049/2421/99011-9
Internet: www.shaker.de   •   e-mail: info@shaker.de



Summary

In this work, the propagation behavior of orbital angular momentum (OAM)
waves is numerically studied in scenarios commonly encountered in radio fre-
quency (RF) communication links.
In the RF domain, OAM waves comprise an orthogonal mode system, where

the different OAM modes distinguish themselves in their spacial phase pat-
tern. One method to excite OAM waves in free space is using a uniform
circular array (UCA). Currently, two main applications of OAM waves are
being discussed. First, they can be used in future communication systems as
a type of multi-input multi-output (MIMO) system, where the orthogonal-
ity of the mode system allows the OAM modes to be used as independent
communication channels. One challenge here is that the orthogonality of the
modes is disrupted by some environments. Second, OAM waves can be used
in the sensing domain, improving the resolution of the target by evaluating
the reflection of different OAM modes.
To improve the fundamental understanding about the behavior and inter-

actions of OAM waves, this thesis numerically evaluates the wave behavior in
different scenarios. To that aim, the OAM mode system is introduced gener-
ally for N -ports and the symmetry requirements for the network parameters to
retain mode orthogonality are derived. In addition, the numerical challenges
in the simulation are discussed. The behavior of the OAM modes is subse-
quently investigated in scenarios encountered along a communication link in
terms of mode transmission and mode orthogonality. After utilizing a match-
ing and mode excitation network, the OAM modes can be guided along a
transmission line, for which multiple types and geometries are investigated for
their ability to retain the mode orthogonality. The UCAs that translate the
guided OAM modes into radiated OAM modes can vary widely, e.g., in terms
of the array elements used or their orientation. The impact of these variations
on the radiated OAM modes is explored. While the radiated OAM modes
propagate, they can encounter different scenarios. This work evaluates simple
environments, such as free space and communication over ground and more
complex scenarios, such as aperture penetration, shielding, and interference
from other antennas.
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