• Home
  • Over ons
  • Uw publicatie
  • Catalogus
  • Recensies
  • Help
  • Account
  • Contact / Impressum
Dissertatie - Publicatiereeks - Congresbundel - Vakboek - Collegedictaat/Studieboek - CD-Rom/DVD - Online Publicatie
Winkelmandje
Catalogus : Details

Jens Trilling

Unterstützung der Graphen- und Heuristikbasierten Topologieoptimierung crashbelasteter Strukturen durch Reinforcement Learning

voorkantachterkant
 
ISBN:978-3-8440-9554-8
Reeks:Maschinenbau
Trefwoorden:Strukturoptimierung; Topologieoptimierung; Crashoptimierung; Künstliche Intelligenz; Reinforcement Learning
Soort publicatie:Dissertatie
Taal:Duits
Pagina's:240 pagina's
Gewicht:312 g
Formaat:21 x 14,8 cm
Bindung:Softcover
Prijs:59,80 € / 74,80 SFr
Verschijningsdatum:Juli 2024
Kopen:
  » plus verzendkosten
Download:

Beschikbare online documenten voor deze titel:

U heeft Adobe Reader, nodig, om deze bestanden te kunnen bekijken. Hier vindt u ondersteuning en informatie, bij het downloaden van PDF-bestanden.

Let u er a.u.b. op dat de online-bestanden niet drukbaar zijn.

 
 DocumentDocument 
 Soort bestandPDF 
 Kosten44,85 EUR 
 ActiesTonen en kopen van het bestand - 4,3 MB (4482980 Byte) 
 ActiesKopen en downloaden van het bestand - 4,3 MB (4482980 Byte) 
     
 
 DocumentInhoudsopgave 
 Soort bestandPDF 
 Kostengratis 
 ActiesHet bestand tonen - 645 kB (660385 Byte) 
 Actiesdownloaden van het bestand - 645 kB (660385 Byte) 
     

Gebruikersinstellingen voor geregistreerde online-bezoekers

Hier kunt u uw adresgegevens aanpassen en uw documenten inzien.

Gebruiker:  niet aangemeld
Acties:  aanmelden/registreren
 Paswoord vergeten?
Aanbevelen:Wilt u dit boek aanbevelen?
Recensie-exemplaarBestelling van een recensie-exemplaar.
VerlinkingWilt u een link hebben van uw publicatie met onze online catalogus? Klik hier.
SamenvattingIn dieser Dissertation wird eine neue Heuristik für die Graphen- und Heuristikbasierte Topologieoptimierung (GHT) vorgestellt, welche ergänzend und konkurrierend zu den bestehenden Expertenregeln antritt. Durch Methoden des Reinforcement Learnings (RL) lernt das der Heuristik zugrundeliegende Machine-Learning-Modell, der Agent, selbstständig eine Strategie an, um die zu optimierende Struktur durch Topologieänderungen zu versteifen. Dazu wird eine zellenbasierte RL-Umgebung vorgestellt, welche eine konsistente Beschreibung von lokalen Bereichen in den Strukturgraphen ermöglicht. Die Zelle definiert den Bereich, in dem die Heuristik Topologiemodifikationen vornehmen kann. Durch ein neu entwickeltes Formabweichungsmaß wird die Steifigkeit einer Zelle rein geometrisch beschrieben. Das Training der Agenten basiert auf einem dreistufigen Prozess, bei dem in den ersten beiden Stufen systematisch nach geeigneten Trainingsparametern gesucht wird. In der dritten Stufe soll die Strategie des Agenten durch Transferlernen weiter generalisiert werden. Neben der versteifenden Heuristik wird diskutiert, wie und ob auf Basis des vorgestellten Ansatzes eine weitere RL-Heuristik entwickelt werden kann, welche die Strukturen nachgiebiger macht.

Die strukturversteifende Heuristik wird in verschiedenen praktischen GHT-Optimierungen auf ihre Performance und den Mehrwert für die GHT hin untersucht. Analysiert wird ein Rahmenmodell, ein Biegeträger und ein Schwellerausschnitt in unterschiedlichen Crashlastfällen. In vielen Optimierungen hat sich gezeigt, dass die RL-Heuristik erfolgreich eingesetzt werden kann und den Optimierungsprozess zu einer besseren Struktur gegenüber einer Vergleichsoptimierung ohne RL-Heuristik führt.